Effect of Anti-Caking Agents on Handling Characteristics of Cane and Palm Jaggery Granules

Authors

  • P. V. K. Jagannadha Rao AICRP on PHET Centre, RARS, ANGRAU, Anakapalle-531 001 (A.P.) Author
  • Madhusweta Das IIT Kharagpur-721 302 (W.B.), India Author
  • S. K. Das IIT Kharagpur-721 302 (W.B.), India Author
  • K. Kiranmayi AICRP on PHET Centre, RARS, ANGRAU, Anakapalle-531 001 (A.P.), India Author
  • P. Sivamma ICAR-Indian Institute of Seed Science, Mau, Uttar Pradesh Author

DOI:

https://doi.org/10.52151/jae2023603.1823

Keywords:

Anti-caking agent, date-palm, jaggery, palmyrapalm, sugarcane

Abstract

Jaggery granules prepared from sugarcane, palmyra-palm, and date-palm syrups were mixed with five levels (0.5 - 2% w/w) of anti-caking agents tricalcium phosphate (TCP) or maize starch (CS). Flowability (FL), hygroscopicity (HG), degree of caking (DC), and angle of repose (AR) of jaggery granules were measured. Flowability was improved significantly (p<0.01) with CS for all three granules. Hygroscopicity of all three jaggery granules decreased linearly (p<0.01) with both anti-caking agents; but it was higher with CS. However, without anti-caking agent, jaggery granules were more hygroscopic. Date-palm jaggery granules were most prone to caking, and DC reduced linearly (p<0.01) with either TCP or CS. This effect was more with CS for palmyra-palm and date-palm jaggery granules. In case of sugarcane jaggery granules, this phenomenon was reversed. The optimum concentration range was found to be 1.38–1.40% and 1.35–1.66% w/w for TCP and CS, respectively.

References

Abdullah EC; Salam AM; Aziz AR. 2010. Cohesiveness and flowability properties of silica gel powder. Physics Intern., 1(1), 16-21.

Addo K A; Bi J; Chen Q; Bhandari B; Lyu J; Wu X; Jin X; Qiao Y; Hou H; Li C. 2020. Assessment of anticaking agent on caking behavior of jujube amorphous powder via glass transition and state diagram. Food Bioprocess. Technol., 13(9), 1588-1599. doi: https://doi.org/10.1007/s11947-020-02493-y

Anon. 2022. Design-Expert. Stat-Ease, Inc., Minneapolis, MN55418, USA. https://www.statease.com/software/design-expert/

Bashir O; Hussain S Z.; Ameer K; Amin T;Beenish; Ahmed I A M; Aljobair M O; Gani G; Mir S A; Ayaz Q; Nazeer N. 2023. Influence of Anticaking Agents and Storage Conditions on Quality Characteristics of Spray Dried Apricot Powder: Shelf Life Prediction Studies Using Guggenheim-Andersonde Boer (GAB) Model. Foods 12, 171. https://doi.org/10.3390/foods12010171

Bhandari B. 2007. Spray drying and powder properties. In: Food Drying Science and Technology: Hui YH; Clary C; Farid M M; Fasina O O; Noomhorm A; Welti-Chanes J (Eds.), Destech Publishers, First Edition, Lancaster, 215-246. ISBN No. 978-1-932078-56-5

Cai Y Z; Corke H. 2000. Production and properties of spray-dried amaranthus betacyanin pigments. J. Food Sci., 65(7), 1248-1252. doi:10.1111/j.1365-2621.2000.tb10273.

Chang L S; Karim R; Abdulkarim S M; Yusof Y A; Ghazali H M. 2018. Storage stability, color kinetics and morphology of spray-dried soursop (Annona muricata L.) powder: Effect of anticaking agents. Int. J. Food Prop., 21(1), 1937-1954. doi: https://doi.org/1 0.1080/10942912.2018.1510836

Chang L S; Karim R; Abdulkarim S M; Yusof Y A; Ghazali H M. 2019. Moisture sorption isotherm and shelf-life prediction of anticaking agent incorporated spray-dried soursop (Annona muricata L.) powder. J. Food Process Eng., 42(5), 13134. doi: https://doi.org/10.1111/jfpe.13134

Craik D J; Miller B F. 1958. The flow properties of powders under humid conditions. J. Pharm. Pharmacol., 10, 136-144. doi: https://doi.org/10.1111/j.2042-7158.1958.tb10392.x

Duffy S P; Puri V M. 1994. Effect of moisture content on flow properties of powders. Am. Soc. Agric. Eng. Meeting (USA), 94-4033, 21. ISBN: 0149-9890

Fu Y; Luo F; Ma L; Dai H; Wang H; Chen H; Zhang Y. 2023. The moisture adsorption, caking, and flowability of silkworm pupae peptide powders: The impacts of anticaking agents. Food Chemistry, 419, 135989. https://doi.org/10.1016/j.foodchem.2023.135989

Gomez K A; Gomez A A. 1984. Statistical Procedures for Agricultural Research. John Wiley and Sons, Singapore, 14-16. ISBN:0-471-87092-7

Haugaard I S; Krag J; Pisecky J; Westergaard V. 1978. Analytical Methods for Dry Milk Powders. Niro Atomizer, Denmark.

Hazlett R; Schmidmeier C; O'Mahony J A. 2021. Approaches for improving the flowability of high-protein dairy powders post spray drying–A review. Powder Technol., 388, 26-40. doi: https://doi.org/10.1016/j.powtec.2021.03.02d

Hollenbach A M; Peleg M; Rufner R. 1983. Inter particle surface affinity and the bulk properties of conditioned powders. Powder Technol.,35, 51-62.doi: https://doi.org/10.1016/0032-5910(83)85026-8

Irani R R; Callis C F. 1960. The use of conditioning agents to improve the handling of cereal products. Cereal Sci. Today, 5(7), 198-201.

James R. 1971. Vacuum puff freeze drying of tropical fruit juices. J. Food Sci., 36, 906-910. doi: https://doi.org/10.1111/j.1365-2621.1971.tb15557.x

Jaya S. 2003. Vacuum drying of mango pulp. Unpublished Ph.D. Thesis, Indian Institute of Technology, Kharagpur, India.

Jaya S; Das H. 2004. Effect of maltodextrin, glycerol monostearate and tricalcium phosphate on vacuum dried mango powder properties. J. Food Eng.,63(2), 125-134. doi: https://doi.org/10.1016/S0260-8774(03)00135-3

Jaya S; Das H; Mani S. 2006. Optimization of maltodextrin, and tricalcium phosphate for producing vacuum dried mango powder. Int. J. Food Prop., 9, 13-24. doi: https://doi.org/10.1080/10942910500217666

Kavitha B; Vijayalakshmi R; Poorna C R; Yalagala I M; Sugasini D. 2018. Nutritional evaluation and cell viability of formulated probiotic millet fruit bar. J Food Nutr. Disor., 7, 2, 2. doi: 10.4172/2324-9323.1000246

Lee S C; Karim R; Sabo M A; Yus A Y; Hasanah M G. 2018. Storage stability, colour kinetics and morphology of spray-dried soursop (Annona muricata L.) powder: Effect of anticaking agents. Int. J. Food Prop., 21(1), 1937-1954. doi: https://doi.org/10.1080/10942912.2018.1510836

Lipasek R A; Ortiz J C; Taylor L S; Mauer L J. 2012. Effects of anticaking agents and storage conditions on the moisture sorption, caking, and flowability of deliquescent ingredients. Food Res. Int., 45(1), 369–380. doi: https://doi.org/10.1016/j.foodres.2011.10.037

Nurhadi B; Roos Y H. 2017. Influence of anti-caking agent on the water sorption isotherm and flow-ability properties of vacuum dried honey powder. J. Food Eng., 210, 76-82. doi: https://doi.org/10.1016/j.jfoodeng.2017.04.020

Nurhadi B; Sukri N; Sugandi W K; Widanti A P; Restiani R; Noflianrini Z; Herudiyanto M. 2018. Comparison of crystallized coconut sugar produced by traditional method and amorphous coconut sugar formed by two drying methods: Vacuum drying and spray drying. Int. J. Food Prop., 21(1), 2339-2354. doi: https://doi.org/10.1080/10942912.2018.1517781

Nurhadi B; Sukri N; Saputra R A; Wandhani F I; Nurlita A I. 2020. Physical characteristics of amorphous and crystalline coconut sugar powder with the addition of tricalcium phosphate (TCP) as an anticaking agent. Int. J. Food Sci., 5320173. doi: https://doi.org/10.1155/2020/5320173.

Oliveira D M; Clemente E; da Costa J M C. 2014. Hygroscopic behavior and degree of caking of grugru palm (Acrocomia aculeata) powder. J. Food Sci. Technol., 51, 2783-2789. doi: https://doi.org/10.1007/s13197-012-0814-9

Onwulata C I; Konstance R P; Holsinger V H. 1996. Flow properties of encapsulated milk fat powders as affected by flow agent. J. Food Sci., 61, 1211-1215. doi: https://doi.org/10.1111/j.1365-2621.1996.tb10962.x

Pattnayak P K; Misra M K. 2004. Energetic and economics of traditional gur preparation: a case study in Ganjam district of Orissa, India. Biomass Bioenergy, 26, 79-88. doi: https://doi.org/10.1016/S0961-9534(03)00061-8

Peleg M; Mannheim C H. 1973. Effect of conditioners on the flow properties of powdered sucrose. Powder Technol.,7, 45-50. doi: https://doi.org/10.1016/0032-5910(73)80007-5

Peleg M; Hollenbach A M. 1984. Flow conditioners and anticaking agents. Food Technol. (USA), 38(3), 93-102.

Phanindra Kumar H S; Radhakrishna K; Mahesh S; Jagannath J H; Bawa A S. 2005. Effect of pretreatments and additives on the thermal behaviour and hygroscopicity of freeze-dried pineapple juice powder. J. Food Process. Preserv., 29(5-6), 307-318. doi: https://doi.org/10.1111/j.1745-4549.2005.00030.x

Pui L P; Karim R; Yusof Y A; Wong C W; Ghazali H M. 2020. Anti-caking agent effects on the properties of spray-dried ‘Cempedak’ fruit powder. Pertanika J. Trop. Agric. Sci., 43(4), 621–635. doi: https://doi.org/10.47836/pjtas.43.4.15

Raigar R K; Mishra H N. 2015. Effect of moisture content and particle sizes on physical and thermal properties of roasted Bengal gram flour. J. Food Process. Preserv., 39(6), 1839-1844. doi: https://doi.org/10.1111/jfpp.12419

Ramachandran P; Poojitha M N; Srividya N. 2014. Influence of maltodextrin and nutritive anti-caking agents on quality characteristics and storage stability of papaya powder. Res. J. Pharm. Biol. Chem. Sci., 5(2), 1108-1123. ISSN: 0975-8585

Rao Jagannadha P V K; Das Madhusweta; Das S K. 2007. Jaggery - A traditional Indian sweetener. Indian J. Tradit. Knowl., 6(1), 95-102. http://nopr.niscpr.res.in/handle/123456789/854

Rao Jagannadha P V K; Das Madhusweta; Das S K. 2008. Thermophysical properties of sugarcane, palmyra-palm and date-palm granular jaggery. Int. J. Food Prop., 11, 876-886. doi: https://doi.org/10.1080/10942910701671281

Rao Jagannadha P V K; Madhusweta Das; Das S K. 2009. Changes in physical and thermophysical properties of sugarcane, palmyra-palm and date-palm juices at different concentration of sugar. J. Food Eng., 90, 559-566. doi: https://doi.org/10.1016/j.jfoodeng.2008.07.024

Rao Jagannadha P V K; Das Madhusweta; Das S K. 2010. Effect of moisture content on glass transition and sticky point temperatures of sugarcane, palmyra-palm date-palm jaggery granules. Int. J. Food Sci. Technol., 45, 94-104. doi: https://doi.org/10.1111/j.1365-2621.2009.02108.x

Rao Jagannadha P V K; Madhusweta; Das S K. 2017. Effect of anti-caking agents on moisture sorption isotherms of palmyra-palm jaggery granules. Int. J. Process. Post Harvest Technol., 8(2), 113-122. doi: 10.15740/HAS/IJPPHT/8.2/113-122

Rao Jagannadha P V K; Das S K; Das M. 2022. Development of mechanized system for production of date-palm jaggery granules. Key Eng. Mater., 925, 47-56. doi: https://doi.org/10.4028/p-0csrj5

Ribeiro L C; da Costa J M; Afonso M R. 2019. Hygroscopic behavior of acerola powder obtained by spray-drying. Acta Sci. Technol., 41, 35382. doi: https://doi.org/10.4025/actascitechnol.v41i1.35382

Sablani S S; Shrestha A K; Bhandari B R. 2008. A new method of producing date-powder granules: physicochemical characteristics of powder. J. Food Eng., 87, 416-421. doi: https://doi.org/10.1016/j.jfoodeng.2007.12.024

Sathiyanarayanan G; Saibaba G; Seghal Kiran G; Selvin J. 2013. Process optimization and production of polyhydroxybutyrate using palm jaggery as economical carbon source by marine sponge-associated Bacillus licheniformis MSBN12. Bioprocess Biosyst. Eng., 36, 1817-1827. Doi: 10.1007/s00449-013-0956-9

Sjollema A. 1963. Some investigations on the free flowing properties and porosity of milk powders. Neth. Milk Dairy J., 17, 245-259.

Solís-Fuentes J A; Hernández-Ceja Y; del Rosario Hernández-Medel M; García-Gómez R S; Bernal-González M; Mendoza-Pérez S; del Carmen Durán-Domínguez-de M. 2019. Quality improvement of jaggery, a traditional sweetener, using bagasse activated carbon. Food Biosci., 32, 100444. doi: https://doi.org/10.1016/j.fbio.2019.100444

Vega C; Esther K; Xiao D C; Roos Y H. 2005. Solid-state characterization of spray-dried ice cream mixes. Colloids Surf. B: Biointerfaces, 45, 66-75. doi: https://doi.org/10.1016/j.colsurfb.2005.07.009

Published

2023-12-30

Issue

Section

Regular Issue

How to Cite

P. V. K. Jagannadha Rao, Madhusweta Das, S. K. Das, K. Kiranmayi, & P. Sivamma. (2023). Effect of Anti-Caking Agents on Handling Characteristics of Cane and Palm Jaggery Granules. Journal of Agricultural Engineering (India), 60(4), 406-418. https://doi.org/10.52151/jae2023603.1823