Modelling Heat and Mass Transfer in High-Capacity Natural Convection Solar Dryers

Authors

  • Achint Sanghi Purdue University, 225 South University Street, West Lafayette, IN 47907, USA Author
  • Karthik Salish Purdue University, 225 South University Street, West Lafayette, IN 47907, USA Author
  • Kingsly Ambrose Purdue University, 225 South University Street, West Lafayette, IN 47907, USA Author

DOI:

https://doi.org/10.52151/jae2023603.1820

Keywords:

Computational fluid dynamics, drying, greenhouse dryer, solar bubble dryer

Abstract

Predicting solar dryer performance under different environmental conditions or assessing their performance to dry different grains is challenging since repeatable full-scale tests are expensive and time consuming. In the present study, computational fluid dynamics approach was used to model the drying of maize in high-capacity dryers such as greenhouse and solar bubble dryer. The absorption of short-wave radiation and the greenhouse effect in the dryer with incident solar radiation was modelled using a dual-band spectrum. The distribution of airflow, temperature, and absolute humidity was analysed in this study to optimise the drying process of maize. Additionally, these results were also used to quantify the drying rate of both greenhouse and solar bubble dryer. The greenhouse dryer model overpredicted the dryer temperatures by an average of 0.12%, and overpredicted absolute humidity by 0.38 per cent. The average Root-Mean-Square Error (RMSE) of temperature prediction was 1.8 °C, and the average RMSE for absolute humidity was 0.0042 for the greenhouse model. On the other hand, the solar bubble dryer model underpredicted temperatures by 1.7%, and underpredicted humidity values by 0.3 per cent. The mean absolute percentage error for the temperature and absolute humidity prediction of the solar bubble dryer model was 1.69% and 0.28%, respectively. The predicted and observed spatial variation in the temperature was similar for both dryers.

References

Aghbashlo M; Müller J; Mobli H; Madadlou A; Rafiee S. 2015. Modeling and simulation of deep-bed solar greenhouse drying of chamomile flowers. Drying Technol., 33(6), 684-695. https://doi.org/10.1080/07373937.2014.981278

Aktaş M; Şevik S; Dolgun E C; Demirci B. 2019. Drying of grape pomace with a double pass solar collector. Drying Technol., 37(1), 105-117. https://doi.org/10.1080/07373937.2018.1441154

Allegrini J; Carmeliet J. 2017. Coupled CFD and building energy simulations for studying the impacts of building height topology and buoyancy on local urban microclimates. Urban Climate, 21, 278-305. https://doi.org/10.1016/j.uclim.2017.07.005

Allegrini J; Dorer V; Carmeliet J. 2015. Coupled CFD, radiation and building energy model for studying heat fluxes in an urban environment with generic building configurations. Sustainable Cities Soc., 19, 385-394. https://doi.org/10.1016/j.scs.2015.07.009

American Society of Heating. 2005. ASHRAE Handbook : Fundamentals - SI Edition. American Society of Heating Refrigerating and Air- Conditioning, Atlanta, GA., pp.: 1024. ISBN: 9781628705355.

Aubinet M. 1994. Longwave sky radiation. Solar Energy, 53(2), 147-154.

Bartzanas T; Boulard T; Kittas C. 2004. Effect of vent arrangement on windward ventilation of a tunnel greenhouse. Biosyst. Eng., 88(4), 479-490. https://doi.org/10.1016/j.biosystemseng.2003.10.006

Baxevanou C; Fidaros D; Bartzanas T; Kittas C. 2010. Numerical simulation of solar radiation, air flow and temperature distribution in a naturally ventilated tunnel greenhouse. Agric. Eng. Int.: CIGR J., 12(3-4), 48-67.

Benni S; Tassinari P; Bonora F; Barbaresi A; Torreggiani D. 2016. Efficacy of greenhouse natural ventilation: Environmental monitoring and CFD simulations of a study case. Energy Build., 125, 276- 286. https://doi.org/10.1016/j.enbuild.2016.05.014

Bird R B; Lightfoot E N; Stewart W E. 1962. Transport Phenomena. Wiley , New York, NY, 1-895. ISBN: 9780471410775

Çakır U; Şahin E. 2015. Using solar greenhouses in cold climates and evaluating optimum type according to sizing, position and location: A case study. Comput. Electron. Agric., 117, 245-257. https://doi.org/10.1016/j.compag.2015.08.005

Castro A M; Mayorga E Y; Moreno F L. 2018. Mathematical modelling of convective drying of fruits: A review. J. Food Eng., 223, 152-167. https://doi.org/ https://doi.org/10.1016/j.jfoodeng.2017.12.012

Chavan A; Vitankar V; Shinde N; Thorat B. 2021. CFD simulation of solar grain dryer. Drying Technol., 39(8), 1101-1113. https://doi.org/10.1080/07373937.2020.1863422

Chavan A; Vitankar V; Thorat B. 2021. CFD modeling and experimental study of solar conduction dryer. Drying Technol., 39(8), 1087-1100. https://doi.org/10.1080/07373937.2020.1846051

Churchill S W; Chu H H S. 1975. Correlating equations for laminar and turbulent free convection from a vertical plate. Int. J. Heat Mass Transfer, 18(11), 1323-1329. https://doi.org/10.1016/0017-9310(75)90243-4

Condorí M; Saravia L. 2003. Analytical model for the performance of the tunnel-type greenhouse drier. Renewable Energy, 28(3), 467-485. https://doi.org/10.1016/S0960-1481(01)00137-9

Dake R A; N’Tsoukpoe K E; Kuznik F; Lèye B; Ouédraogo I W K. 2021. A review on the use of sorption materials in solar dryers. Renewable Energy, 175, 965-979. https://doi.org/10.1016/j.renene.2021.05.071

Dixon J C. 2007. The Shock Absorber Handbook. Second Edition. John Wiley & Sons Ltd., West Sussex, England. pp: 407. ISBN: 978-0-470-51020-9. https://doi.org/10.1002/9780470516430

E Bartosik R; E Maier D. 2007. Study of adsorption and desorption equilibrium relationships for yellow dent, white, and waxy maize types using the modified Chung- Pfost equation. Trans. ASABE, 50(5), 1741-1749. https://doi.org/10.13031/2013.23931

Ekechukwu O V; Norton B. 1996. Design and measured performance of a solar chimney for natural circulation solar energy dryers. J. Solar Energy Eng., Trans. ASME, 118(1), 69-71. https://doi.org/10.1115/1.2847956

Ghaffari A; Mehdipour R. 2015. Modeling and improving the performance of cabinet solar dryer using computational fluid dynamics. Int. J. Food Eng., 11(2), 157-172. https://doi.org/10.1515/ijfe-2014-0266

Gupta M J; Chandra P. 2002. Effect of greenhouse design parameters on conservation of energy for greenhouse environmental control. Energy, 27(8), 777-794. https://doi.org/10.1016/S0360-5442(02)00030-0

Hempattarasuwan P; Somsong P; Duangmal K; Jaskulski M; Adamiec J; Srzednicki G. 2020. Performance evaluation of parabolic greenhouse-type solar dryer used for drying of cayenne pepper. Drying Technol., 38(1-2), 48-54. https://doi.org/10.1080/07373937.2019.1609495

IRRI. 2016. Solar Bubble Dryer. International Rice Research Institute, Bangkok, Thailand, Retrieved from http://grainpro.com/gpi/index.php?option=com_content&view=article&id=115&Itemid=1653

Jain D; Tiwari G N. 2004. Effect of greenhouse on crop drying under natural and forced convection I: Evaluation of convective mass transfer coefficient. Energy Convers. Manage., 45(5), 765-783. https://doi.org/10.1016/S0196-8904(03)00178-X

Jamaleddine T J; Ray M B. 2010. Application of computational fluid dynamics for simulation of drying processes: A review. Drying Technol., 28(2), 120-154. https://doi.org/10.1080/07373930903517458

Janjai S; Lamlert N; Intawee P; Mahayothee B; Bala B K; Nagle M; Müller J. 2009. Experimental and simulated performance of a PV-ventilated solar greenhouse dryer for drying of peeled longan and banana. Solar Energy, 83(9), 1550-1565. https://doi.org/10.1016/j.solener.2009.05.003

Kaewkiew J; Nabnean S; Janjai S. 2012. Experimental investigation of the performance of a large-scale greenhouse type solar dryer for drying chilli in Thailand. Procedia Eng., 32, 433-439. https://doi.org/10.1016/j.proeng.2012.01.1290

Lingayat A; Chandramohan V P; Raju V R K. 2017. Design, development and performance of indirect type solar dryer for banana drying. Energy Procedia, 109, 409-416. https://doi.org/10.1016/j.egypro.2017.03.041

Mathioulakis E; Karathanos V T; Belessiotis V G. 1998. Simulation of air movement in a dryer by computational fluid dynamics: Application for the drying of fruits. J. Food Eng., 36(2), 183-200. https://doi.org/10.1016/S0260-8774(98)00026-0

Mobtaker H G; Ajabshirchi Y; Ranjbar S F; Matloobi M. 2019. Simulation of thermal performance of solar greenhouse in north-west of Iran: An experimental validation. Renewable Energy, 135, 88-97. https://doi.org/10.1016/j.renene.2018.10.003

Modest M F. 2013. Radiative Heat Transfer. Third edition. Academic Press, Oxford, UK, pp: 882. ISBN: 978-0-12-386944-9.

Mokhtarian M; Kalbasi-Ashtari A; Xiao H W. 2020. Effects of solar drying operation equipped with a finned and double-pass heat collector on energy utilization, essential oil extraction and bio-active compounds of peppermint (Mentha Piperita L.). Drying Technol., 40(5), 1-27. https://doi.org/10.1080/07373937.2020.1836650

Njie D N; Rumsey T R. 1998. Experimental study of cassava sun drying. Drying Technol., 16(1-2), 163-180. https://doi.org/10.1080/07373939808917397

Page G E. 1949. Factors influencing the maximum rates of air drying shelled corn in thin layers. Unpublished M.S. thesis. Purdue University, West Lafayette, IN, USA.

Prakash O; Kumar A. 2014. Application of artificial neural network for the prediction of jaggery mass during drying inside the natural convection greenhouse dryer. Int. J. Ambient Energy, 35(4), 186-192. https://doi.org/10.1080/01430750.2013.793455

Prakash O; Kumar A; Laguri V. 2016. Performance of modified greenhouse dryer with thermal energy storage. Energy Reports, 2, 155-162. https://doi.org/10.1016/j.egyr.2016.06.003

Prakash O; Laguri V; Pandey A; Kumar A; Kumar A. 2016. Review on various modelling techniques for the solar dryers. Renewable Sustainable Energy Rev., 62, 396-417. https://doi.org/10.1016/j.rser.2016.04.028

Ranjbaran M; Emadi B; Zare D. 2014. CFD simulation of deep-bed paddy drying process and performance. Drying Technol., 32(8), 919-934. https://doi.org/10.1080/07373937.2013.875561

Rathore N S; Panwar N L. 2010. Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying. Appl. Energy, 87(8), 2764-2767. https://doi.org/10.1016/j.apenergy.2010.03.014

Román-Roldán N I; López-Ortiz A; Ituna-Yudonago J F; García-Valladares O; Pilatowsky-Figueroa I. 2019. Computational fluid dynamics analysis of heat transfer in a greenhouse solar dryer “chapel-type” coupled to an air solar heating system. Energy Sci. Eng., 7(4), 1123-1139. https://doi.org/10.1002/ese3.333

Rossié K. 1953. Die Diffusion von Wasserdampf in Luft bei Temperaturen bis 300°C. Forschung Auf Dem Gebiet Des Ingenieurwesens A, 19(2), 49-58. https://doi.org/10.1007/BF02558326

Sachithananthan K; Trim D; Speirs C I. 1983. A solar-dome dryer for drying fish. UNDP-FAO, Cairo, Egypt., pp: 27. https://www.fao.org/3/bu027e/bu027e.pdf

Saini V; Tiwari S; Tiwari G N. 2017. Environ economic analysis of various types of photovoltaic technologies integrated with greenhouse solar drying system. J. Cleaner Product., 156, 30-40. https://doi.org/10.1016/j.jclepro.2017.04.044

Salish K; Ambrose R P K. 2021. Predicting powder caking using cohesion energy density. Powder Technol., 393, 312-322. https://doi.org/10.1016/j.powtec.2021.07.079

Salish K; Pushpadass H A; Franklin M E E; Mitra H; Muniandy S; Ghosh B C. 2021. Three-dimensional computational fluid dynamics modeling of baking of chhana podo (milk cake). J. Food Process Eng., 44(1), e13587. https://doi.org/10.1111/jfpe.13587

Salvatierra-Rojas A; Nagle M; Gummert M; deBruin T; Müller J. 2017. Development of an inflatable solar dryer for improved postharvest handling of paddy rice in humid climates. Int. J. Agrlc. Biol. Eng., 10(3), 269-282. https://doi.org/10.3965/j.ijabe.20171003.2444

Sanghi A; Ambrose R P K; Maier D. 2018. CFD simulation of corn drying in a natural convection solar dryer. Drying Technol., 36(7), 859-870. https://doi.org/10.1080/07373937.2017.1359622

Sethi V P; Sharma S K. 2007. Survey of cooling technologies for worldwide agricultural greenhouse applications. Solar Energy, 81(12), 1447-1459. https://doi.org/10.1016/j.solener.2007.03.004

Simate I N. 2001. Simulation of the mixed-mode natural-convection solar drying of maize. Drying Technol., 19(6), 1137-1155. https://doi.org/10.1081/DRT-100104810

Thorpe G R. 2008. The application of computational fluid dynamics codes to simulate heat and moisture transfer in stored grains. J. Stored Prod. Res., 44(1), 21-31. https://doi.org/10.1016/j.jspr.2007.07.001

Tiwari G N; Das T; Chen C R; Barnwal P. 2009. Energy and exergy analyses of greenhouse fish drying. Int. J. Exergy, 6(5), 620-636. https://doi.org/10.1504/IJEX.2009.027493

Tiwari G N; Kumar S; Prakash O. 2004. Evaluation of convective mass transfer coefficient during drying of jaggery. J. Food Eng., 63(2), 219-227. https://doi.org/10.1016/j.jfoodeng.2003.07.003

Udomkun P; Romuli S; Schock S; Mahayothee B; Sartas M; Wossen T; Müller J. 2020. Review of solar dryers for agricultural products in Asia and Africa: An innovation landscape approach. J. Environ. Manage., 268, 110730. https://doi.org/10.1016/j.jenvman.2020.110730

White G M; Ross I J; Westerman P W. 1973. Drying rate and quality of white shelled corn as influenced by dew point temperature. Trans. ASAE, 16(1), 118-120. https://doi.org/10.13031/2013.37461

Zhong Z; Braun J E. 2007. A simple method for estimating transient heat transfer in slab-on-ground floors. Build. Environ., 42(3), 1071-1080. https://doi.org/10.1016/j.buildenv.2005.01.030

Published

2023-12-30

Issue

Section

Regular Issue

How to Cite

Achint Sanghi, Karthik Salish, & Kingsly Ambrose. (2023). Modelling Heat and Mass Transfer in High-Capacity Natural Convection Solar Dryers. Journal of Agricultural Engineering (India), 60(4), 353-376. https://doi.org/10.52151/jae2023603.1820