Solar Photovoltaic Pump-operated Micro-irrigation Systems: A Comprehensive Review

Authors

  • Kamlesh Narayan Tiwari Indian Institute of Technology Kharagpur- 721 302, India Author
  • Mahesh Vinayak Hadole Indian Institute of Technology Kharagpur- 721 302, India Author
  • Prabodh Bajpai Indian Institute of Technology, Kanpur- 208016, India Author

DOI:

https://doi.org/10.52151/jae2022594.1789

Keywords:

Agriculture irrigation, photovoltaic, solar energy, water

Abstract

Increasing energy scarcity has compelled the agricultural and energy engineers to look for alternative renewable energy sources to sustain irrigated agriculture. Among the renewable energy options available for irrigation, adoption of solar photovoltaic (PV) energy is growing at faster rate all around the world. Also, the micro-irrigation (MI) system is widely accepted as the most efficient irrigation method. Integrated application of solar PV and MI system is one of the most energy- and water-efficient solution to agriculture, and is gaining popularity among the farmers. However, the intermittent supply of power from the solar PV system hinders the performance of directly connected MI system. It demands additional costly energy and water storage options for hassle-free operation. Systematic integration of PV and MI system is required to avoid storage options and to meet energy and water demand of crops for universal agricultural applications. This manuscript is an attempt to present a comprehensive review of literature reported in this area in the past two decades.

Author Biographies

  • Kamlesh Narayan Tiwari, Indian Institute of Technology Kharagpur- 721 302, India

    Emeritus Professor

  • Mahesh Vinayak Hadole, Indian Institute of Technology Kharagpur- 721 302, India

    Research Scholar, Department of Agricultural and Food Engineering

  • Prabodh Bajpai, Indian Institute of Technology, Kanpur- 208016, India

    Associate Professor, Department of Sustainable Energy Engineering

References

Allen R G; Pereira L S; Raes D; Smith M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrig. Drain. Pap., 56, FAO, Rome, 1-15.

Arun P; Banerjee R; Bandyopadhyay S. 2009. Optimum sizing of photovoltaic battery systems incorporating uncertainty through design space approach. Sol. Energy, 83(7), 1013-1025. https://doi.org/10.1016/j.solener.2009.01.003

Bahrami A; Okoye C O; Atikol U. 2017. Technical and economic assessment of fixed, single and dual-axis tracking PV panels in low latitude countries. Renewable Energy, 113, 563-579. https://doi.org/10.1016/j.renene.2017.05.095

Bajpai P; Dash V. 2012. Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renewable Sustain. Energy Rev., 16(5), 2926-2939. https://doi.org/10.1016/j.rser.2012.02.009

Barragan J; Cots L; Monserrat J; Lopez R; Wu I P. 2010. Water distribution uniformity and scheduling in micro-irrigation systems for water saving and environmental protection. Biosyst. Eng., 107(3), 202-211. https://doi.org/10.1016/j.biosystemsEng.2010.07.009

Behura A K; Kumar A; Rajak D K: Pruncu C I; Lamberti L. 2021. Towards better performances for a novel rooftop solar PV system. Sol. Energy, 216, 518-529. https://doi.org/10.1016/j.solener.2021.01.045

Bellia H; Youcef R; Fatima M. 2014. A detailed modeling of photovoltaic module using MATLAB. NRIAG J. Astron. Geophys., 3(1), 53-61. https://doi.org/10.1016/j.nrjag.2014.04.001

Benghanem M; Daffallah K O; Alamri S N; Joraid A A. 2014. Effect of pumping head on solar water pumping system. Energy Convers. Manage., 77, 334- 339. https://doi.org/10.1016/j.enconman.2013.09.043

Bush A; Elamin A M; Ali A B; Hong L. 2016. Effect of different operating pressures on the hydraulic performance of drip irrigation system in Khartoum State conditions. J. Environ. Agric. Sci., 6, 64-68.

Campana PE; Li H; Yan J. 2013. Dynamic modelling of a PV pumping system with special consideration on water demand. Appl. Energy, 112, 635-645. https://doi.org/10.1016/j.apenergy.2012.12.073

Campana P E; Li H; Zhang J; Zhang R; Liu J; Yan J. 2015. Economic optimization of photovoltaic water pumping systems for irrigation. Energy Convers. Manag., 95, 32-41. https://doi.org/10.1016/j.enconman.2015.01.066

Carroquino J; Dufo-López R; Bernal-Agustín J L. 2015. Sizing of off-grid renewable energy systems for drip irrigation in Mediterranean crops. Renewable Energy, 76, 566-574. https://doi.org/10.1016/j.renene.2014.11.069

Chandel S S; Nagaraju Naik M; Chandel R. 2015. Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renewable Sustain. Energy Rev., 49, 1084-1099. https://doi.org/10.1016/j.rser.2015.04.083

Chandel S S; Nagaraju Naik M;, Chandel R. 2017 Review of performance studies of direct coupled photovoltaic water pumping systems and case study. Renewable Sustain. Energy Rev., 76, 163-175. https://doi.org/10.1016/j.rser.2017.03.019

Chowdhury M S; Rahman K S; Chowdhury T; Nuthammachot N; Techato K; Akhtaruzzaman M; Tiong S K; Sopian K; Amin N. 2020. An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strateg. Rev., 27, 100431. https://doi.org/10.1016/j.esr.2019.100431

Comello S; Reichelstein S; Sahoo A. 2018. The road ahead for solar PV power. Renewable Sustain. Energy Rev., 92, 744-756. https://doi.org/10.1016/j.rser.2018.04.098

Dabhi P V; Lakkad A P; Patel G R; Shrivastava P K. 2020. Application of Dual Crop Coefficient Approach for estimation of crop water requirement for summer sesame using SIMDualKc Model. J. Agric. Eng., 57(4), 364-376.

Dincer F; Meral M E. 2010. Critical Factors that Affecting Efficiency of Solar Cells. Smart Grid Reneable. Energy, 01(01), 47-50. https://doi.org/10.4236/sgre.2010.11007

Ebaid M SY; Qandil H; Hammad M. 2013. A unified approach for designing a photovoltaic solar system for the underground water pumping well-34 at Disi aquifer. Energy Convers. Manage., 75, 780-795. https://doi.org/10.1016/j.enconman.2013.07.083

El Chaar L; Lamont L A, El Zein N. 2011. Review of photovoltaic technologies. Renewable Sustain. Energy Rev., 15(5), 2165-2175. https://doi.org/10.1016/j.rser.2011.01.004

Elkholy M M; Fathy A. 2016. Optimization of a PV fed water pumping system without storage based on teaching-learning-based optimization algorithm and artificial neural network. Sol. Energy, 139(1), 199-212. https://doi.org/10.1016/j.solener.2016.09.022

Gao X; Liu J; Zhang J; Yan J; Bao S; Xu H; Qin T. 2013. Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table. Appl. Energy, 105, 182- 193. https://doi.org/10.1016/j.apenergy.2012.11.074

Glasnovic Z; Margeta, J. 2007. A model for optimal sizing of photovoltaic irrigation water pumping systems. Sol. Energy, 81(7), 904–916. https://doi.org/10.1016/j.solener.2006.11.003

Gopi A; Sudhakar K; Keng N W; Krishnan A R; Priya S S. 2021. Performance modeling of the weather impact on a utility-scale PV power plant in a tropical region. Int. J. Photoenergy, 2021. https://doi.org/10.1155/2021/5551014

Haddad S; Benghanem M; Mellit A; Daffallah K O. 2015. ANNs-based modeling and prediction of hourly flow rate of a photovoltaic water pumping system: Experimental validation. Renewable Sustain. Energy Rev., 43, 635-643. https://doi.org/10.1016/j.rser.2014.11.083.

Hadole M V; Tiwari K N; Bajpai P. 2021. Energy generation and flow rate prediction of photovoltaic water pumping system for irrigation. Environ. Dev. Sustain., 23, 6722-6733. https://doi.org/10.1007/s10668-020-00886-9

Hammad B; Al-Sardeah A; Al-Abed M; Nijmeh S; Al-Ghandoor A. 2017. Performance and economic comparison of fixed and tracking photovoltaic systems in Jordan. Renewable Sustain. Energy Rev., 80, 827- 839. https://doi.org/10.1016/j.rser.2017.05.241

Hamidat A; Benyoucef B; Hartani T. 2003. Smallscale irrigation with photovoltaic water pumping system in Sahara regions. Renewable Energy, 28(7), 1081- 1096. https://doi.org/10.1016/S0960-1481(02)00058-7

Hamidat A; Benyoucef B. 2008. Mathematic models of photovoltaic motor-pump systems. Renewable Energy, 33(5), 933-942. https://doi.org/10.1016/j.renene.2007.06.023

Hamidat A; Benyoucef B. 2009. Systematic procedures for sizing photovoltaic pumping system, using water tank storage. Energy Policy, 37(4), 1489-1501. https://doi.org/10.1016/j.enpol.2008.12.014

Jamil B; Siddiqui A T; Akhtar N. 2016. Estimation of solar radiation and optimum tilt angles for south-facing surfaces in humid subtropical climatic region of India. Eng. Sci. Technol. Int. J., 19(4), 1826-1835. https://doi.org/10.1016/j.jestch.2016.10.004

Kaplani E; Kaplanis S. 2014. Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination. Sol. Energy, 107, 443-460. https://doi.org/10.1016/j.solener.2014.05.037

Kazem H A; Chaichan MT.2016. Effect of environmental variables on photovoltaic performance based on experimental studies. Int. J. Civil Mech. Energy Sci. (IJCMES), 2(4),1-8.

Khalfi H El; Harkani A; Sebari K; Aissaoui A El. 2021. Modeling hydraulic performance of a drip irrigation network directly coupled to a photovoltaic pumping system. Agric. Eng. Int. CIGR J., 23(2), 203-211.

Khatib T; Mohamed A; Sopian K. 2013. A review of photovoltaic systems size optimization techniques. Renew. Sustain. Energy Rev., 22, 454-465. https://doi.org/10.1016/j.rser.2013.02.023

Kou Q; Klein S A; Beckman WA. 1998. A method for estimating the long-term performance of direct-coupled PV pumping systems. Sol. Energy, 64(1-3), 33-40. https://doi.org/10.1016/S0038-092X(98)00049-8

Kumar A; Rosen N; Devine R; Yang Y. 2011. Interface design to improve stability of polymer solar cells for potential space applications. Energy Environ. Sci., 4, 4917-4920. https://doi.org/10.1039/c1ee01368h

Kumar M; Rajput TBS; Patel N. 2014. Water and nitrogen distribution uniformity for different driplengths under drip irrigation system. J. Agric. Eng., 51(1), 37-43.

Kumar M; Reddy KS; Adake R V; Rao C VKN. 2015. Solar powered micro-irrigation system for small holders of dryland agriculture in India. Agric. Water Manage., 158, 112-119. https://doi.org/10.1016/j.agwat.2015.05.006

Le, H. T. T., Sanseverino, E. R., Nguyen, D. Q., Di Silvestre, M. L., Favuzza, S., & Pham, M. H. 2022. Critical Assessment of Feed-In Tariffs and Solar Photovoltaic Development in Vietnam. Energies, 15(2), 556.

Li G; Jin Y; Akram M W; Chen X; Sarkar A; Paul B; Joca L; Sacks JD; Moore D; Lee J S; Sams R; Cowden J. 2017. Research and current status of the solar photovoltaic water pumping system – A review. Renewable Sustain. Energy Rev., 79, 440-458. https://doi.org/10.1016/j.rser.2017.05.055

Lupangu C; Bansal R C. 2017. A review of technical issues on the development of solar photovoltaic systems. Renewable Sustain. Energy Rev., 73, 950-965. https://doi.org/10.1016/j.rser.2017.02.003

Ma T; Yang H; Lu L; Peng J. 2015a. Optimal design of an autonomous solar-wind-pumped storage power supply system. Appl. Energy, 160, 728-736. https://doi.org/10.1016/j.apenergy.2014.11.026

Ma T; Yang H; Lu L; Peng J. 2015b. Pumped storage based standalone photovoltaic power generation system: Modeling and techno-economic optimization. Appl. Energy, 137, 649-659. https://doi.org/10.1016/j.apenergy.2014.06.005

Malinowski M; Leon J I. 2017. Solar photovoltaic and thermal energy systems : Current technology and future trends. In: Proc. IEEE, 105(11), 2132-2146, DOI:10.1109/JPROC.2017.2690343.

Maurya V N; Ogubazghi G; Misra B P; Maurya A K; Arora D K., 2015. Scope and review of photovoltaic solar water pumping system as a sustainable solution enhancing water use efficiency in irrigation. Am. J. Biol. Environ. Stat., 1(1), 1-8. https://doi.org/10.11648/j.ajbes.20150101.11

Mekhilef S; Saidur R; Kamalisarvestani M. 2012. Effect of dust , humidity and air velocity on efficiency of photovoltaic cells. Renewable Sustain. Energy Rev., 16(5), 2920-2925. https://doi.org/10.1016/j.rser.2012.02.012

Meral M E; Dincer F. 2011. A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems. Renewable Sustain. Energy Rev., 15(5), 2176-2184. https://doi.org/10.1016/j.rser.2011.01.010

Ministry of New and Renewable Energy (MNRE) 2019. Annual Report 2018-19. Ministry of New and Renewable Energy, Government of India, 177p. https://mnre.gov.in/img/documents/uploads/file_f-1608040317211.pdf (Accessed on December 18, 2022).

Mokeddem A; Midoun A; Kadri D; Hiadsi S; Raja I A. 2011. Performance of a directly coupled PV water pumping system. Energy Convers. Manage., 52(10), 3089-3095. https://doi.org/10.1016/j.enconman.2011.04.024

Narale P D; Rathore N S; Kothari S. 2013. Study of solar PV water pumping system for irrigation of horticulture crops. Int. J. Eng. Sci. Invent., 2(12), 54-60.

Narayanamoorthy A. 2004. Impact assessment of drip irrigation in India: the case of sugarcane. Dev. Policy Rev., 22(4), 443-462. https://doi.org/10.1111/j.1467-7679.2004.00259.x

Maurya V N; Ogubazghi G; Misra B P; Maurya A K; Arora D K., 2015. Scope and review of photovoltaic solar water pumping system as a sustainable solution enhancing water use efficiency in irrigation. Am. J. Biol. Environ. Stat., 1(1), 1-8. https://doi.org/10.11648/j.ajbes.20150101.11

Niajalili M; Mayeli P; Naghashzadegan M; Poshtiri A H. 2017. Techno-economic feasibility of off-grid solar irrigation for a rice paddy in Guilan province in Iran: A case study. Sol. Energy, 150, 546-557. https://doi.org/10.1016/j.solener.2017.05.012

Odeh I; Yohanis Y G; Norton B. 2006. Influence of pumping head, insolation and PV array size on PV water pumping system performance. Sol. Energy, 80(1), 51-64. https://doi.org/10.1016/j.solener.2005.07.009

Pande P C; Singh A K; Ansari S; Vyas S K; Dave B K. 2003. Design development and testing of a solar PV pump based drip system for orchards. Renewable Energy, 28(3), 385-396. https://doi.org/10.1016/S0960-1481(02)00037-X

Panjwani M K; Narejo G B. 2014. Effect of humidity on the efficiency of solar cell (photovoltaic), Int. J. Engg. Res. General Sci., 2 (4), 499-503.

Panwar N L; Kaushik S C; Kothari S. 2011. Role of renewable energy sources in environmental protection: A review. Renewable Sustain. Energy Rev., 15(3), 1513-1524. https://doi.org/10.1016/j.rser.2010.11.037

Parida B; Iniyan S; Goic R. 2011. A review of solar photovoltaic technologies. Renewable Sustain. Energy Rev., 15(3), 1625-1636. https://doi.org/101016/j.rser.2010.11.032

Pawar N; Bishnoi D K; Singh M; Dhillon A. 2015. Comparative economic analysis of drip irrigation visa-vis flood irrigation system on productivity of Bt . cotton in Haryana. Agric. Sci. Digest, 35(4), 300-303. https://doi.org/10.18805/asd.v35i4.6863

Racharla S; Rajan K. 2017. Solar tracking system–a review. Int. J. Sustain. Eng., 10(2), 72-81. https://doi.org/10.1080/19397038.2016.1267816

Raghuwanshi SS; Arya R. 2019. Renewable energy potential in India and future agenda of research. Int. J. Sustain. Eng., 12(5), 291-302. https://doi.org/10.1080/19397038.2019.1602174

Reddy K Y; Tiwari K N; Ravindra V. 2000. Hydraulic analysis of trickle irrigation system for economic design. Int. Agric. Eng. J., 9(2), 81-95.

Renu; Bora B; Prasad B; Sastry OS; Kumar A; Bangar M. 2017. Optimum sizing and performance modeling of Solar Photovoltaic (SPV) water pumps for different climatic conditions. Sol. Energy, 155, 1326- 1338. https://doi.org/10.1016/j.solener.2017.07.058

Sahu B K. 2016. Solar energy developments, policies and future prospectus in the state of Odisha, India. Renewable Sustain. Energy Rev., 61, 526-536. https://doi.org/10.1016/j.rser.2016.04.027

Santosh D T; Reddy R G; Tiwari K N. 2017. Effect of drip irrigation levels on yield of lettuce under polyhouse and open field condition. Int. J. Curr. Microbiol. Appl. Sci., 6(7), 1210-1220.

Senol R. 2012. An analysis of solar energy and irrigation systems in Turkey. Energy Policy, 47, 478–486. https://doi.org/10.1016/j.enpol.2012.05.049

Sharda R; Mahajan G; Siag M; Singh A; Chauhan BS. 2017. Performance of drip-irrigated dry-seeded rice (Oryza sativa L.) in South Asia. Paddy Water Environ., 15, 93-100. https://doi.org/10.1007/s10333-016-0531-5

Singh A K; Singh Ranjeet; Yadav S R; Godara A S; Singh S P; Kaledhonkar M J; Meena B L. 2021. Saline water irrigation through drip for ground nut wheat cropping sequence in hyper arid-region of Rajasthan. J. Agric. Eng., 58(1), 50-61. https://doi.org/10.52151/jae2021581.1734

Singh GK. 2013. Solar power generation by PV (photovoltaic) technology: A review. Energy, 53, 1-13. https://doi.org/10.1016/j.energy.2013.02.057

Singh P; Ravindra N M. 2012. Temperature dependence of solar cell performance - An analysis. Sol. Energy Mater. Sol. Cells, 101, 36-45. https://doi.org/10.1016/j.solmat.2012.02.019

Skoplaki E; Boudouvis AG; Palyvos J A. 2008. A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Sol. Energy Mater. Sol. Cells, 92(1), 1393-1402. https://doi.org/10.1016/j.solmat.2008.05.016

Stoppato A; Cavazzini G; Ardizzon G; Rossetti A. 2014. A PSO (particle swarm optimization)- based model for the optimal management of a small PV(Photovoltaic)-pump hydro energy storage in a rural dry area. Energy, 76(1), 168-174. https://doi.org/10.1016/j.energy.2014.06.004

Surendran U; Jayakumar M; Marimuthu S. 2016. Low cost drip irrigation: Impact on sugarcane yield, water and energy saving in semiarid tropical agro ecosystem in India. Sci. Total Environ., 573, 1430- 1440. https://doi.org/10.1016/j.scitotenv.2016.07.144

Tagar A; Chandio FA; Mari I A; Wagan B. 2012. Comparative study of drip and furrow irrigation methods at farmer’s field in Umarkot. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng., 69, 863-867.

Tang P; Li H; Issaka Z; Chen C. 2018. Effect of manifold layout and fertilizer solution concentration on fertilization and flushing times and uniformity of drip irrigation systems. Agric. Water Manage., 200, 71-79. https://doi.org/10.1016/j.agwat.2018.01.010

Tiwari K N; Kumar M; Singh V K; Santosh DT. 2016. Response of drip irrigation and plastic mulch on quality of sapota (Achras Zapota) fruits. Int. J. Agric. Environ. Biotechnol., 9(4), 699-710.

Tiwari K N; Singh A; Mal P K. 2003. Effect of drip irrigation on yield of cabbage (Brassica oleracea L. var. capitata) under mulch and non-mulch conditions. Agric. Water Manage., 58(1), 19-28.

Vasel A; Iakovidis F. 2017. The effect of wind direction on the performance of solar PV plants. Energy Convers. Manage., 153, 455-461. https://doi.org/10.1016/j.enconman.2017.09.077

Venot J P; Zwarteveen M; Kuper M; Boesveld H; Bossenbroek L; Kooij S. Van Der; Wanvoeke J; Benouniche M; Errahj M; Fraiture C. De;

Verma S. 2014. Beyond the promises of technology: A review of the discourses and actors who make drip irrigation. Irrig. Drain., 63(2), 186-194. https://doi.org/10.1002/ird.1839

World Bank 2017. State of Electricity Access Report. Full Report (English), World Bank Group, Washington D. C., (Vol. 2), pp. 81. http://documents.worldbank.org/curated/en/364571494517675149/full-report.

Yadav K; Sastry O S; Wandhare R; Sheth N; Kumar M; Bora B; Singh R; Renu; Kumar A. 2015. Performance comparison of controllers for solar PV water pumping applications. Sol. Energy, 119, 195-202. https://doi.org/10.1016/j.solener.2015.06.050

Zavala V; López-Luque R; Reca J; Martínez J; Lao M T. 2020. Optimal management of a multisector standalone direct pumping photovoltaic irrigation system. Appl. Energy, 260, 114261. https://doi.org/10.1016/j.apenergy.2019.114261

Zhou W; Yang H; Fang Z. 2007. A novel model for photovoltaic array performance prediction. Appl. Energy, 84, 1187-1198. https://doi.org/10.1016/j.apenergy.2007.04.006

Published

2022-12-12

Issue

Section

Regular Issue

How to Cite

Kamlesh Narayan Tiwari, Mahesh Vinayak Hadole, & Prabodh Bajpai. (2022). Solar Photovoltaic Pump-operated Micro-irrigation Systems: A Comprehensive Review. Journal of Agricultural Engineering (India), 59(4). https://doi.org/10.52151/jae2022594.1789