Kinetics of Thin Layer Drying of Safed Musli (Chlorophytum borivilianum) Roots

Authors

  • Pankaj Kumar ICAR-Central Institute of PostHarvest Engineering and Technology, Ludhiana, Punjab, India Author
  • Manju Bala ICAR-Central Institute of PostHarvest Engineering and Technology, Ludhiana, Punjab, India Author
  • Mridula D ICAR-Central Institute of Women in Agriculture, Bhubaneshwar, Odisha, India Author
  • Swati Sethi ICAR-Central Institute of PostHarvest Engineering and Technology, Ludhiana, Punjab, India Author

DOI:

https://doi.org/10.52151/jae2024611.1835

Keywords:

Safed Musli roots, drying, empirical modelling, kinetics, moisture diffusivity

Abstract

The present research focused on the medicinal plant Safed Musli (Chlorophytum borivilianum), which is commonly used in traditional Indian medicine. The powdered roots of this plant are frequently incorporated into pharmaceutical formulations. The primary objective of this study was to analyse the drying behaviour of Safed Musli roots using empirical modelling. Specifically, the roots were dried at three distinct temperatures (45, 50, and 55 °C) until they attained equilibrium moisture content. The initial root moisture content was 313.21% (d.b.). Six empirical models for drying were tested using the moisture ratios derived from the moisture loss data. The models were assessed based on the coefficient of determination (R2 ) and root mean square error (RMSE). The Page model emerged as the best-fitting model, with R2 values ranging from 0.9913 to 0.9961 at all three drying temperatures. The effective diffusivity of Safed Musli roots varied from 2.234×10-9 to 5.214×10-9 m2 .s-1, with higher values observed at higher drying temperatures. This study offers valuable insights for engineers who design drying equipment and processes for Safed Musli roots, thereby enhancing the efficiency and quality of the drying process.

References

Adiletta G; Wijerathne C; Senadeera W; Russo P; Crescitelli A; Matteo M D. 2018. Dehydration and rehydration characteristics of pretreated pumpkin slices. Ital. J. Food Sci., 30(4), 684-706. https://doi.org/10.14674/IJFS-1176

Agbossou K; Napo N; Chakraverty S. 2016. Mathematical modelling and solar tunnel drying characteristics of Yellow Maize. Am. J. Food Sci. Technol., 4(4), 115-124.10. https://doi.org/10.12691/ajfst-4-4-5

Ajala A S; Abubakar M A. 2018. Study of drying kinetics and quality attributes of fermented corn grains as affected by drying temperatures and velocities. J. Nutr. Health Food Eng., 8(2), 205-212. https://doi.org/10.15406/jnhfe.2018.08.00270

AOAC. 1984. Official Methods of Analysis. Association of Official Analytical Chemists. 14th Edition, AOAC, Arlington, 249-252.

Asiru W B; Raji A O; Igbeka J C; Elemo G N. 2013 Mathematical modelling of thin layer dried cashew kernels. Niger. Food J., 31(2), 106-112. https://doi.org/10.1016/S0189-7241(15)30083-7

Baballs J; Belessiotis V G. 2014. Influence of the drying conditions on the drying contents and moisture diffusivity during the thin layer drying of figs. J. Food Eng., 65, 449-458. https://doi.org/10.1016/j.jfoodeng.2004.02.005

Correa P. C; Ferenando B; Gabriel O; Andre G; Osvaldo R; Silvia C B. 2011. Mathematical modelling of the drying process of corn ears. Acta Sci. Agron., 33(4), 574-581. https://doi.org/10.1016/j.jfoodeng.2004.02.005

Dagde K K; Iminabo J T. 2018. Determination of kinetic parameters for thin layer drying of corn. Int. Res. J. Adv. Eng. Sci., 3(4), 119-124.

Doymaz I. 2017. Drying kinetics, rehydration and color characteristics of convective hot-air drying of carrots slices. Heat Mass Transfer, 53, 25-35. https://doi.org/10.1007/s00231-016-1791-8

Gunhan T; Demir V; Hancioglu, E; Hepbasli A. 2005. Mathematical modelling of drying of bay leaves. Energy Conversion and Management, 46(11-12), 1667-1679. https://doi.org/10.1016/J.ENCONMAN.2004.10.001

Inyang U. E; Oboh I O; Etuk, B. R. 2018. Kinetic models for drying techniques- food materials. Adv. Chem. Eng. Sci., 8, 27-48. https://doi.org/10.4236/aces.2018.82003

Jackis A; Muvengei M; Hiram N; Calvin O. 2018. Modeling of thin layer drying kinetics of maize in hybrid solar biomass dryer. Int. J. Sci. Eng. Technol. Res., 7(9), 643-650.

Kalbande S R; Jadhav P; Khambalkar V P; Deshmukh S. 2017. Design of solar dryer assisted with reflector for drying of medicinal crops. Int. J. Curr. Microbiol. App. Sci., 6(2), 170-184. http://dx.doi.org/10.20546/ijcmas.2017.602.024

Khanam Z; Singh O; Singh R; Bhat I U H. 2013. Safed Musli (Chlorophytum borivilianum): a review of its botany, ethnopharmacology and phytochemistry. Journal of Ethnopharmacology, 150(2), 421-441. https://doi.org/10.1016/J.JEP.2013.08.064

Kohli D; Shahi N C; Kumar A. 2018. Drying kinetics and activation energy of asparagus root (Asparagus racemosus Wild.) for different methods of drying. Curr. Res. Nutr. Food Sci., 6(1), 191-202. https://dx.doi.org/10.12944/CRNFSJ.6.1.22

Kothari S; Singh K. 2003. Production techniques for the cultivation of Safed Musli (Chlorophytum borivilianum). The Journal of Horticultural Sci. and Biotech., 78(2), 261-264. https://doi.org/10.1080/14620316.2003.11511615

Kucuk H; Kilic A; Midilli A. 2014. Common Applications of Thin Layer Drying Curve Equations and Their Evaluation Criteria. In Progress in Exergy, Energy and the Environment (Eds. I Dincer, A Midilli, H Kucuk), Springer, Cham, 669-680. http://dx.doi.org/10.1007/978-3-319-04681-5_63

Kumar P; Bala M; Singh R; D Mridula. 2020. Modelling the drying characteristics of ashwagandha (Withania somnifera) roots. Int. J. Chemi. Studi., 8(4), 207-212. https://doi.org/10.22271/chemi.2020.v8.i4c.9690

Kumar P; Saha D. 2021. Drying kinetics of maize cob using mathematical modelling. J. Agric. Engg., 58(1), 40–49. https://doi.org/10.52151/jae2021581.1733

Mbegbu N N; Nwajinka C O; Amaefule D O. 2021. Thin layer drying models and characteristics of scent leaves (Ocimum gratissimum) and lemon basil leaves (Ocimum africanum). Heliyon, 7(1), e05945. https://doi.org/10.1016/j.heliyon.2021.e05945

Moshen B. 2016. Energy efficiency and moisture diffusivity of apple slices during convective drying. Food Sci. Technol., 36(1), 145-150. https://doi.org/10.1590/1678-457X.0068

Mphahlele R R; Pathare P B; Opara U L. 2019. Drying kinetics of pomegranate fruit peel (cv. Wonderful). Sci. Afr., 5, e00145. http://dx.doi.org/10.1016/j.sciaf.2019.e00145

Muchilwa I E; Hensel O; Matofari J W. 2014. Evaluating the water activity simulation consistency of empirical models for shelled and cobed maize drying. Int. J. Agri. Sci., 4(3), 177-188.

Norhashila H; Onwude D; Ezdalina R. 2014. A preliminary study: kinetic model of drying process of pumpkins (Cucurbita Moschata) in a convective hot air dryer. Agric. Sci. Proc., 2, 345-352. https://doi.org/10.1016/j.aaspro.2014.11.048

Onwude D I; Hashim N; Janius R B; Nawi N M; Abdan K. 2016a. Evaluation of a suitable thin layer model for drying of pumpkin under forced air convection. Int. Food Res. J., 23, 1173-1181.

Onwude D I; Hanshim N; Janius R B; Nawi N M; Abdan K. 2016b. Modeling the thin layer drying of fruits and vegetables: a review. Compr. Rev. Food Sci. Food Saf., 15, 299-618. https://doi.org/10.1111/1541-4337.12196

Pandey S K; Diwan S; Soni R. 2015. Review of mathematical modelling of thin layer drying process. Int. J. Curr. Eng. Sci. Res., 3, 96-107.

Perea-Flores M J; Garibay-Febles V; ChanonaPerez J J; Calderon-Dominguez G; Mendez-Mendez J V; Palacios-Gonzalez E; Gutierrez-Lopez G F. 2012. Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperature. Ind Crop Prod., 38, 64-71. http://dx.doi.org/10.1016/j.indcrop.2012.01.008

Rai P. K; Barnwal P; Sharma P; Dikshit A K. 2020. Microwave-assisted drying kinetics of Safed Musli (Chlorophytum borivilianum) roots. J. Food Sci. Technol., 57(1), 372-381. https://doi.org/10.1007/s13197-019-04040-4

Rosa D P; Cantu-Lozano; Luna-Solano G; Polachini T C; Telis-Romero J. 2015. Mathematical modelling of orange seed drying kinetics. Cienc. Agrotechnol., 39, 291-300. https://doi.org/10.1590/S1413-70542015000300011

Sakkalkar S R; Bakane P H; Sonone V. S; Dhumal C V. 2014. Heat pump drying of Safed Musli (Chlorophytum borivilianum). Int. J. Agril. Engg. 7(1), 86-92.

Sakkalkar Sushil R; Bakane P H; Khedkar M B; Dhumal C V. 2013. Modeling of convective drying of Safed Musli (Chlorophytum borivilinum). J. Med. Plant Res., 7(10), 602-611. https://doi.org/10.5897/JMPR012.1216

Siqueira V C; Resende O; Chaves T H. 2012. Drying kinetics of Jatropa seeds. Rev. Ceres., 59, 171-177. https://doi.org/10.1590/S0034-737X2012000200004

Wang C Y; Singh R P. 1978. A single layer drying equation for rough rice. ASAE Paper No: 78-3001, ASAE, St. Joseph, MI.

Younis M; Abdelkarim D; El-Abdein A Z. 2018. Kinetics and mathematical modelling of infrared thin-layer drying of garlic slices. Saudi J. Biol. Sci., 25(2), 332-338. https://doi.org/10.1016/j.sjbs.2017.06.011

Published

2024-04-01

Issue

Section

Regular Issue

How to Cite

Pankaj Kumar, Manju Bala, Mridula D, & Swati Sethi. (2024). Kinetics of Thin Layer Drying of Safed Musli (Chlorophytum borivilianum) Roots. Journal of Agricultural Engineering (India), 61(1), 67-75. https://doi.org/10.52151/jae2024611.1835