Physical, Chemical, Thermal, and Mechanical Properties of Cotton Stalk: An Industrial Multi-purpose Cotton By-product

Authors

  • Ashutosh P. Pandirwar Scientist, ICAR-Central Institute of Agricultural Engineering, Bhopal, India Author
  • Himanshu S. Pandey Scientist, ICAR-Central Institute of Agricultural Engineering, Bhopal, India Author
  • Ajit P. Magar Scientist, ICAR-Central Institute of Agricultural Engineering, Bhopal, India Author
  • Abhay O. Shirale Scientist, ICAR-National Bureau of Soil Sciences and Land Use Planning, India Author
  • Dushyant Singh Principal Scientist,ICAR-Central Institute of Agricultural Engineering, Bhopal, India Author
  • Gautam Majumdar Senior Scientist, ICAR-Central Institute of Cotton Research, Nagpur, India. Author
  • Sandip Mandal Sr.Scientist, ICAR-Central Institute of Agricultural Engineering, Bhopal, India Author

DOI:

https://doi.org/10.52151/jae2023602.1807

Keywords:

Chemical, cotton stalk, mechanical, physical, thermal properties

Abstract

This study was conducted to investigate physical, chemical, thermal, and mechanical properties of cotton stalk. Cotton plant stem diameter, plant height, root spread, and plant weight were assessed and found to be significantly different for G. Arboreum and hybrid variety. The N, P, K, and S contents were 0.453, 0.227, 0.907, and 0.12% for stem; and 0.393, 0.183, 0.987, and 0.113% for root, respectively. Whereas Fe, Mn, Zn, and Cu concentrations were 205.41, 30.22, 30.64, and 20.23 ppm for stem; and 179.86, 19.00, 23.89, and 12.52 ppm, respectively, for root of cotton plant. The calorific value of cotton stem and root was 17.41 MJ.kg-1 and 17.37 MJ.kg-1, respectively. Thermal properties of cotton biomass indicated its suitability as fuel in biomass-based power plants, briquetting, and gasification. Maximum tensile strength of cotton stalk of diameters 8-14 mm ranged between 2.01-7.25 kN and 1.52-3.30 kN for stalk moisture content below and above 10% (d.b.), respectively. Maximum compressive strength of stalk diameters 8-14 mm ranged between 1.50-4.78 kN and 0.76-2.48 kN for moisture content below and above 10% (d.b.), respectively. Tensile and compressive strengths were significantly different at moisture content below and above 10 per cent. These results would help in exploring more industrial and domestic applications of cotton stalk.

References

Afif Al R; Pfeifer C; Pröll T. 2019. Bioenergy recovery from cotton stalk. Adv. Cotton Res. IntechOpen, 1-19. https://doi.org/10.5772/intechopen. 88005

Amer E A H; Gomaa A H; Baiomy M H; Ibrahim A A. 2008. Physical and mechanical characteristics for some agricultural residues. Misr. J. Agric. Eng., 25(1), 121-146.

Anon. 2022. Cotton: Review of the world situation. World International Cotton Advisory Committee, ICAC J.,.75(4), 1-32. June 2022. https://icac.org/Content/PublicationsPdf%20Files/04c58418_8bd4_42e4_91f9_839064c124c8/Cotton-Review4-2022.pdf.pdf.pdf

ASAE. 2003. Moisture Measurement: Forages. ASAE Standard, American Society of Agricultural Engineering, Fineers, St. Joseph, MI, ASAE S358.2, pp: 595.

ASTM. 2009. Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature. ASTM International, West Conshohocken, PA, USA, ASTM E9-09. https://www.astm.org/e0009-09.html Accessed 6 June 2023.

ASTM. 2016. Standard Test Methods for Tension Testing of Metallic Materials; ASTM International, West Conshohocken, PA, USA, ASTM E8/E8M-16a. https://www.astm.org/e0008_e0008m-16a.html

Choudhary B; Gaur K. 2015. Biotech Cotton in India, 2002 to 2014. ISAAA Series of Biotech Crop Profiles, International Service for The Acquisition of Agri-Biotech Applications (ISAAA), Ithaca, NY, pp: 35. https://www.isaaa.org/resources/publications/biotech_crop_profiles/bt_cotton_in_india-a_country_profile/download/bt_cotton_in_india-2002-2014.pdf

Chen J h; Zhao N; Fu N; Li D; Wang L-j; Chen X D. 2019. Mechanical properties of hulless barley stem with different moisture contents. Int. J. Food Eng., 15(1-2), 0033. doi:10.1515/ijfe-2018-0033

Ciolkosz D. 2010. Characteristics of Biomass as a Heating Fuel. Renewable and Alternative Energy Factsheet. The Pennsylvania State University, 112 Agricultural Administration Building, University Park, PA 16802, 1-4. www.bioenergy.psu.edu

Coulibaly S; Touré M; Kouamé A; Kambou I; Soro S; Yéo K; Koné S. 2020. Incorporation of crop residues into soil: A practice to improve soil chemical properties. Agric. Sci., 11, 1186-1198. doi: 10.4236/as.2020.1112078

Demirbas A. 2002. Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor. Exploit., 20, 105-111. https://dx.doi.org/10.1260/014459802760170420

Dhar M; Krishna P V; Roy S. 2010. Manual on better management practices for cotton cultivation: a guide on sustainable cotton production. WWF-India, Lodi Estate, New Delhi. http://awsassets.wwfindia.org/downloads/better_management_practices_for_cotton_cultivation. pdf Accessed 20 August 2022

Du D; Wang J. 2016.Research on mechanics properties of crop stalks: A review. Int. J. Agric. Biol. Eng., 9(6), 10-19.

Fu B; Chen L; Huang H; Qu P; Wei Z. 2021. Impacts of crop residues on soil health: A review. Environ. Pollut. Bioavail., 33(1), 164-173.

Galedar M N; Jafari A; Mohtasebi S S; Tabatabaeefar A; Sharifi A; O’Doghertyc M J; Rafieea S; Richard G. 2008. Effects of moisture content and level in the crop on the engineering properties of alfalfa stems. Biosyst.Eng.,101, 199 –208.

Galedar M N; Tabatabaeefar A; Jafari A; Sharifi A; Rafiee; Mohtasebi SS. 2009. Influence of moisture content, rate of loading and height regions on tensile strength of alfalfa stems. Int. Agrophys., 23, 27-30.

Galhano D S R; Bordado J C; Mateus M M. 2018. Estimation of HHV of lignocellulosic biomass towards hierarchical cluster analysis by Euclidean’s distance method. Fuel, 221, 72-77. doi:10.1016/j.fuel.2018.02.092

Garba A. 2020. Biomass Conversion Technologies for Bioenergy Generation: An Introduction. In: Book (Eds. Basso Thalita Peixoto; Basso Thiago Olitta; Basso Luiz Carlos), Biotechnological Applications of Biomass, IntechOpen, 1-16. http://dx.doi.org/10.5772/intechopen.93669

Gravalos I; Kateris D; Xyradakis P; Gialamas T S; Loutridis S; Augousti A; Georgiades A; Tsiropoulos Z. 2010. A study on calorific energy values of biomass residue pellets for heating purposes. In: Proc. Forest Engineering: Meeting the Needs of the Society and the Environment, July 11 - 14, Padova, Italy, 1-9.

Harun N Y; Saeed A A H; Ramachandran V A A. 2020. Abundant nipa palm waste as bio-pellet fuel. Mater. Today Proc., 42, 436-443. https://dx.doi.org/10.1016/j.matpr.2020.10.169

Hiloidhari M; Das D; Baruah D C. 2014. Bioenergy potential from crop residue biomass in India. Renewable Sustain. Energy Rev., 32, 504-512.

Kaur K; Singh P. 2022. Crop Residue Burning in India: Potential Solutions. In: Book (Eds. Ahmad Fiaz; Sultan M), Agricultural Waste – New Insights (Working Title), 107457.10.5772/intechopen.107457

Khan M M R; Chen Y; Laguë C; Landry H; Peng Q; Zhong W. 2010. Compressive properties of Hemp (Cannabis sativa L.) stalks. Biosyst. Eng., 106(3), 315-323. https://doi.org/10.1016/j.biosystemseng.2010.04.004

Kidanmariam G; Tilahun D; Zegeye A. 2019. Characterization and evaluation of the mechanical and physical properties of Tefstem (Eragrostistef (Zucc.). Trotter. Agric. Eng. Int.: CIGR J., 21(1), 169-180.

Makavana J M; Agravat V V; Balas P R; Makwana P J; Vyas V G. 2018. Engineering properties of various agricultural residue. Int. J. Curr. Microbiol. Appl. Sci., 7(6), 2362-2367. https://doi.org/10.20546/ijcmas.2018.706.282

Meyer L A. 2021. China and India lead 2021/22 Global cotton mill use increase. In: Cotton and Wool Outlook, U.S. Department of Agriculture, Economic Research Service, October 14, 2021, CWS-21j, pp: 8. https://www.ers.usda.gov/webdocs/outlooks/102342/cws-21j.pdf?v=7694.9. Accessed 2 June 2023.

Namadi S; Musa A O; Hamza B S; Abdullahi S; Bala A; Abdulaziz A; Sani I. 2018. Determination of calorific value of biomass briquette fuel produced from waste-paper, cornstalk and bagasse. Niger. J. Renewable Energy, 18(1&2), 76 – 82.

Nigam P S; Singh A. 2011. Production of liquid biofuels from renewable resources. Prog.Energy Combust. Sci., 37 (1), 52-68. https://doi.org/10.1016/j.pecs.2010.01.003

Pandirwar A P; Khadatkar A; Mehta C R; Majumdar G; Idapuganti R; Vellaichamy M; Shirale A O. 2023. Technological advancement in harvesting of cotton stalks to establish sustainable raw material supply chain for industrial applications: A review. Bioenergy Res., 16, 741–760. https://doi.org/10.1007/s12155-022-10520-3

Qi C; Guo K; Liu Y. 2012. Preparation and properties of cotton stalk bundles and high-density polyethylene composites using hot-press moulding. J. Reinf. Plast. Compos., 31(15), 1017–1024.

Ramanjaneyulu A; Ramprasad B; Sainath N; Errabelli U; Pallavi C; Jakkula V; Rumandla J. 2021. Crop residue management in cotton. Chron. Bioresour. Manage., 5, 01-08.

Saeed A A H; Harun N Y; Bilad M R; Afzal M T; Ashak M P. 2021. Moisture content impact on properties of briquette produced from rice husk waste, Sustainability, 13(6), 3069. DOI:10.3390/su13063069

Sakariya K K; Sarsavadia P N; Chauhan P M; Kelaiya S V; Ramani M L. 2019. Physicochemical properties and proximate analysis of cotton stalks biomass. Int. J. Chem. Stud., 7(6), 1375-1378.

Sarkar I; Shaikh M B. 2014. Assessment of soil chemical properties through application of fresh aquatic weeds. J. Sci. Innov. Res., 3 (2), 227-233.

Schaffer S; Pröll T; Al Afif R; Pfeifer C. 2019. A mass- and energy balance-based process modelling study for the pyrolysis of cotton stalks with char utilization for sustainable soil enhancement and carbon storage. Biomass Bioenergy, 120, 281-290.

Schmidt H P; Pandit B H; Cornelissen G; Kammann C I. 2017. Biochar-based fertilization with liquid nutrient enrichment: 21 Field trials covering 13 crop species in Nepal. Land Degrad. Dev.. 28, 2324-2342.

Schulte E E; Hopkins B G. 1996. Estimation of organic matter by weight loss-on-ignition. Soil Organic Matter: Analysis and Interpretation, SSSA, Madison, SSSA Special Publication Number 46, 21-31.

Senthilkumar T; Thilagam V K. 2015. Study on effect of incorporation of shredded cotton stalks by cotton stalk shredder on soil properties. Madras Agric. J., 102(4-6), 193-195.

Sessiz A; Eliçin A K; Esgici R; Özdemir G; Nozdrovicky L. 2013. Cutting properties of olive sucker. Acta Technol. Agric., 3, 82-86.

Shahbazi F; Galedar M N. 2012. Bending and shearing properties of safflower stalk. J. Agric. Sci. Technol., 14, 743-754.

Shah D U; Reynolds T P S; Ramage M H. 2017. The strength of plants: Theory and experimental methods to measure the mechanical properties of stems. J. Exp. Bot., 68, (16), 4497-4516. https://doi.org/10.1093/jxb/ erx245

Sidhu G K; Sandhya. 2015. Engineering properties of cotton stalks (GossypiumhirsitumL.). Indian J. Agric. Res., 49(5), 456-459.

Sonde V M; Belkhode P N; Sakhale C N. 2015. Physical and mechanical characteristics for cotton and pigeon pie as agriculture residues. Int. J. Appl. Innovation Eng. Manage., 4(7), 156-169.

Sutaria G S; Vora V D; Vekaria P D; Akbari K N. 2016. Technology for rapid composting of cotton stalk. Int. J. Agric. Sci. Res., 6, 211–216.

Taghinezhad J; Alimardani R; Jafari Ali. 2013. Effect of moisture content and dimensional size on the shearing characteristics of sugarcane stalks. Int. J. Agric. Technol., 9(2), 281-294. http://www.ijat-aatsea. com ISSN 2630-0192

TERI. 2019. Development of spatially resolved air pollution emission inventory of India. The Tata Energy and Resources Institute, Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi, pp: 78. https://www.teriin.org/sites/default/files/2021-05/ Exxon-Report.pdf Accessed on 8 June 2023.

Tumuluru J S; Tabil L G; Song Y; Iroba K L; Meda V. 2014. Grinding energy and physical properties of chopped and hammer-milled barley, wheat, oat, and canola straws. Biomass Bioenergy, 60(350), 58-67.

Umesh D; Sarsavadiya P; Vaja K; Mahadeo K. 2015. Physiochemical properties of cotton stalk biomass from agricultural residues. Curr. World Environ., 10(1), 343-349.

Vellaichamy M; Saxena A K. 2020. Fermentation technology: A viable tool for bio-conversion of lignocellulosic biomass into value-added products. Int. J. Curr. Microbiol. Appl. Sci., 9, 1747-1762. https:// doi.org/ 10.20546/ ijcmas. 2020. 907. 201

Wang T; Wang G; Wang D; Tabil L G. 2012. Investigation of the compression characteristics of LeymuschinensisL. Presented at ASABE Annual International Meeting, Hilton Anatole, Dallas, Texas, July 29 – August 1.

Wanjura J D; Barnes E M; Kelley M S; Holt G A; Pelletier M G. 2014. Quantification and characterization of cotton crop biomass residue. Ind. Crops Prod., 56, 94–104. https:// doi.org/ 10. 1016/j. indcr op. 2014. 02. 019

Wojcieszak D; Przybył J; Czajkowski Ł; Majka J; Pawłowski A. 2022. Effects of harvest maturity on the chemical and energetic properties of corn stover biomass combustion. Mater., 15(8), 2831. https:// doi. org/10.3390/ma15082831

Yadav R K; Reddy S J; Kumar A A; Reddy M K. 2022. Determination of physical properties of cotton plant in the development of cotton uprooter cum shredder. J. Curr. Crop Sci. Technol., 109 (11-12), 1-7. https://doi.org/10.29321/MAJ.10.000690

Zhang H; Tewolde H; Shankle M. 2017. Chemical characterization of cotton plant parts for multiple uses. Agric. Environ. Lett., 2, 1-5. doi:10.2134/ ael2016.11.0044

Zhang L; Yang Z; Zhang Q; Guo H. 2016. Tensile properties of maize stalk rind. BioResour.,11(3), 6151-6161.

Zhao C; Zhang F; Cao Z. 2009. Experiment on stalk mechanical properties of legume forage and grasses. Trans. Chin. Soc. Agric. Eng., 25(9), 122-126.

Published

2023-07-10

Issue

Section

Regular Issue

How to Cite

Ashutosh P. Pandirwar, Himanshu S. Pandey, Ajit P. Magar, Abhay O. Shirale, Dushyant Singh, Gautam Majumdar, & Sandip Mandal. (2023). Physical, Chemical, Thermal, and Mechanical Properties of Cotton Stalk: An Industrial Multi-purpose Cotton By-product. Journal of Agricultural Engineering (India), 60(2), 188-204. https://doi.org/10.52151/jae2023602.1807