Mathematical Modelling and Techno-economic Evaluation of Hybrid Photovoltaic-thermal Forced Convection Solar Drying of Indian Jujube (Zizyphus mauritiana)

Authors

  • Surendra Poonia Division of Agricultural Engineering and Renewable Energy, ICAR-Central Arid Zone Research Institute, Jodhpur Author
  • A.K. Singh Division of Agricultural Engineering and Renewable Energy, ICAR-Central Arid Zone Research Institute, Jodhpur Author
  • Dilip Jain Division of Agricultural Engineering and Renewable Energy, ICAR-Central Arid Zone Research Institute, Jodhpur, India Author

DOI:

https://doi.org/10.52151/jae2018554.1671

Keywords:

Indian jujube drying, PV/T hybrid solar dryer, mathematical modelling, economic evaluation

Abstract

Two identical units of a hybrid photovoltaic-thermal (PV/T) solar dryer designed and constructed at ICAR-Central Arid Zone Research Institute, Jodhpur, were used to dry Indian jujube (Zizyphus mauritiana) fruit, one operated under natural and the other under forced convection modes. The fruits were dried to safe moisture content (24 %) in a period of 192 h in forced convection mode, and in 240 h in natural convection mode with drying load of 18 kg. There was a significant difference in performance of the dryer under forced and natural convection mode. The average thermal efficiency of solar energy utilization under forced convection mode was higher (16.7 %) than that of natural convection solar dryer (15.6 %). Logarithmic drying model was suitable for describing the thin layer drying behaviour of the fruit. Effective moisture diffusivity of forced convection dryer was 3.34 × 10-7 m2 .s-1 . Economic evaluation of the solar dryer indicated high value of IRR (54.5 %), and low value of payback period (2.26 years), suggesting the dryer to be cost efficient.

Author Biographies

  • Surendra Poonia, Division of Agricultural Engineering and Renewable Energy, ICAR-Central Arid Zone Research Institute, Jodhpur

    Senior Scientist

  • A.K. Singh, Division of Agricultural Engineering and Renewable Energy, ICAR-Central Arid Zone Research Institute, Jodhpur

    Principal Scientist

  • Dilip Jain, Division of Agricultural Engineering and Renewable Energy, ICAR-Central Arid Zone Research Institute, Jodhpur, India

    Principal Scientist

References

Aghbashlo M; Kianmehr M H; Khani S; Ghasemi M. 2009. Mathematical modeling of thin layer drying of carrot. Int. J. Agrophys., 23, 313–317.

Aissa W; Mostafa El-Sallak; Ahmed E. 2014. Performance of solar dryer chamber used for convective drying of sponge-cotton. Thermal Sci., 18(2), 451-462.

Akpinar A K; Bicer Y. 2008. Mathematical modelling of thin layer drying process of long green pepper in solar dryer and under open sun. Energy Convers. Manage.,49, 1367-1375.

AOAC. 2000. Official Methods of Analysis. 17th Edition, The Association of Official Analytical Chemists, Gaithersburg, MD, USA. Methods 925.10, 65.17, 974.24, 992.16.

AOAC. 2005. Official Methods of Analysis. Association of Official Analytical Chemists, Washington D.C., USA, pp:771.

Arslan D; Özcan M M. 2010. Study the effect of sun, microwave and microwave drying on quality of onion slices. Food Sci. Technol.,43 (7), 1121–1127.

Barnwal P; Tiwari G N. 2008. Grape drying by using hybrid photovoltaic–thermal (PV/T) greenhouse dryer: an experimental study. Sol. Energy, 82, 1131–1144.

Bezerra C V; Silva L H M; Corrêa D F; Rodrigues A M C. 2015. A modeling study for moisture diffusivities and moisture transfer coefficients in drying of passion fruit peel. Int. J. Heat Mass Transf., 85, 750–755.

Beigi O R. 1997. Approach to The Production and Processing Plants. Tarahan Publisher, Tehran, 1, 109- 110.

Bruce D M. 1985. Exposed-layer barley drying, three models fitted to new data up to 150°C. J. Agric. Eng. Res., 32, 337–347.

Corzo O; Bracho N; Pereira A; Vasquez A. 2008. Weibull distribution for modeling air drying of coroba slices. J. Food Sci. Technol., 41, 2023-2028.

Das P; Dutta A S. 2013. A comparative study on drying of ber. J. Agric. Eng., 50 (1), 34-38.

Dhanushkodi S; Vincent H W; Kumarasamy S. 2015. Life cycle cost of solar biomass hybrid dryer systems for cashew drying of nuts in India. Environ. Climate Technol., 15(1), 22-33.

Doymaz İ. 2005. Drying behaviour of green beans. J. Food Eng., 69, 161-165.

Domyaz I. 2006. Drying kinetics of black grapes treated with different solutions. J. Food Eng., 76, 212-217.

Doymaz İ. 2007. The kinetics of forced convective air-drying of pumpkin slices.J. Food Eng., 79(1), 243–248.

Doymaz İ. 2010. Effect of citric acid and blanching pre-treatments on drying and rehydration of amasya red apples. Food Bioprod. Process., 88, 124–132.

Doymaz İ.; İsmail O. 2011. Drying characteristics of sweet cherry. Food Bioprod. Process., 89(1), 31–38.

Doymaz İ. 2012. Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L). Energy Convers. Manage., 56, 199–205.

Ekechukwu O V; Norton B. 1999. Review of solar-energy drying systems II: An overview of solar drying technology. Energy Convers. Manage., 40, 615–655.

El-Beltagy A; Gamea G R; Amer Essa A H. 2007. Solar drying characteristics of strawberry. J. Food Eng., 78, 456-464.

Eswara A R; Ramakrishnarao M. 2013. Solar energy in food processing—a critical appraisal. J. Food Sci. Technol., 50(2), 209–227.

Faal S; Tavakoli T; Ghobadian B. 2015. Mathematical modelling of thin layer hot air drying of apricot with combined heat and power dryer. J. Food Sci. Technol., 52(5), 2950–2957.

Gbaha P; Yobouet A H; Kouassi S J; Kamenan K B; Toure S. 2007. Experimental investigation of a solar dryer with natural convective heat flow. Renew. Energy, 32, 1817-1829.

Goyal R K; Kingsly A R P; Manikantan M R; Ilyas S M. 2007. Mathematical modelling of thin layer drying kinetics of plum in a tunnel dryer. J. Food Eng., 79(1), 176–180.

Hande A R; Swami Shrikant Baslingappa; Thakor N J. 2017. Studies on solar drying of kokum (Garcinia Indica) rind and its quality evaluation. J. Agri. Eng., 54(2), 23-32.

Hashim N; Daniel O; Rahaman E. 2014. A preliminary study: Kinetic model of drying process of pumpkins (Cucurbita Moschata) in a convective hot air dryer. Agric. Sci. Procedia, 2(2), 345–352.

Headley O. 1997. Renewable energy technologies in the Caribbean. Sol. Energy, 59 (1–3), 1–9.

Henderson S M; Pabis S. 1961. Grain drying theory. I. Temperature effect on drying coefficient. J. Agric. Eng. Res., 6(3), 169–174.

Hossain M A; Woods J L; Bala B K. 2005. Optimization of solar tunnel drier for drying of chili without color loss. Renew. Energy, 30(5), 729-742.

Huang B J; Lin T H; Hung W C; Sun F S. 2001. Performance evaluation of solar photovoltaic/thermal systems. Sol. Energy, 70 (5), 443–448.

Kadam D M; Samuel D V K. 2006. Convective flat-plate solar heat collector for cauliflower drying. Biosyst. Eng., 93(2), 189-198.

Kalogirou S. 1996. Economic analysis of solar energy systems using spreadsheets. In: Proceedings of 4th World Renewable Energy Congress, Denver, Colorado, USA, 1303-1307.

Kashaninejad M; Mortazavi A; Safekordi A; Tabil L G. 2007. Thin layer drying characteristics and modeling of pistachio nuts. J. Food Eng., 78(1), 98–108.

Kim T K. 2015. T test as a parametric statistic. Kor. J. Anesthesiol., 68(6), 540-546

Kouchakzadeh A; Shafeei S. 2010. Modeling of microwave-convective drying of pistachios. Energy Convers. Manage., 51(10), 2012-2015.

Koukouch A; Idlimam A; Asbik M; Sarh B; Izrar B; Bah A; Ansari O. 2015. Thermophysical characterization and mathematical modeling of convective solar drying of raw olive pomace.Energy Convers. Manage.,99, 221–230.

Leon A M; Kumar S; Bhattacharya S C. 2002. A comprehensive procedure for performance evaluation of solar food dryers. Renew. Sustain. Energy Rev., 6(4), 367–393.

Lewis W K. 1921. The rate of drying of solid materials. Indus. Eng. Chem., 13(5), 427–432.

Li M; Yang G L; Min S; Gao X Y; Wang Y; Li M R. 2007. Extract process of cyclic adenosinem on ophoshate (cAMP) in Ziziphus jujube. J. Chinese Med. Mater., 30, 1143–1145.

Lopez A; Iguaz A; Esnoz A; Virsed P. 2000. Thin-layer drying behaviour of vegetable wastes from wholesale market. Drying Technol., 18, 995-1006.

Mahapatra A K; Imre L. 1990. Role of solar agricultural drying in developing countries. Int. J. Ambient Energy, 2, 205–210.

Madhlopa A; Jones S A; Kalenga S J D. 2002. A solar air heater with composite absorber systems for food dehydration. Renew. Energy, 27, 27-37.

Omid B R. 1997. Approach to the Production and Processing Plants. Tarahan Publisher, Tehran, 109-110.

Page G E. 1949. Factors influencing the maximum rates of air drying shelled corn in thin layers. Unpublished M.S. Thesis, Department of Mechanical Engineering, Purdue University, West Lafayette, USA.

Pande P C; Nahar N M; Chaurasia P B L; Mishra D; Tiwari J C; Kushwaha H L. 2009. Renewable energy spectrum in arid region. In: Trends in Arid Zone Research in India (Eds. Kar Amal; Garg B K; Singh M P; Kathju S), CAZRI, Jodhpur, 210-237.

Pareek S; Yahia E M. 2013. Postharvest biology and technology of ber fruit. In: Horticultural Reviews (Eds. Janick J), Wiley-Blackwell, John Wiley and Sons, Inc., 201-240.

Perea-Flores M J; Garibay-Febles V; Chanona- Pérez J J; Calderón-Domínguez G; Méndez-Méndez J V; Palacios-González E; Gutiérrez-López G F. 2012. Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Indian Crops Prod., 38, 64–71.

Piga A; Pinna I; Ozer K B; Agabbio M; Aksoy U. 2004. Hot air dehydration of figs (Ficuscarica L.): drying kinetics and quality loss. Int. J. Food Sci. Technol., 39, 793-799.

Poonia S; Singh A K; Santra P; Jain D. 2017. Performance evaluation and cost economics of a low cost solar dryer for ber (Zizyphusmauritiana) fruit. Agric. Eng. Today, 41(1), 25-30.

Purohit P; Kumar A; Kandpal T C. 2006. Solar drying vs. open sun drying: A framework for financial evaluation. Sol. Energy, 80, 1568-1579.

Roberts M; Singh R P; Cunba L M. 2000. Osmotic-convective dehydrofreezing process for drying kiwi fruit. J. Food Sci., 62(5), 1039-1042.

Sachidananda S; Din M; Chandrika R; Sahoo G P; Roy S D. 2014. Performance evaluation of biomass fired dryer for copra drying: A comparison with traditional drying in subtropical climate. J. Food Process. Technol., 5(1), 294.

Sacilik K; Keskin R; Elicin A K. 2006. Mathematical modelling of solar tunnel drying of thin layer organic tomato. J. Food Eng.,73, 231-238.

Sankat C K; Maharaj R; Mujaffar S. 2010. Solar drying of tropical agricultural crops: A Caribbean perspective. Ann. Arid Zone, 49(3&4), 241-258.

Saravacos G D; Raouzeos G S. 1986. Diffusivity of moisture in air-drying of raisins. In: Drying,(Ed. Mujumdar, A. S), Hemisphere Publishing Co., New York, USA, 86, 487-491.

Sharma A; Chen C R; Vu Lan N. 2009. Solar-energy drying systems: A review. Renew. Sustainable Energy Rev., 13, 1185-1210.

Sharma G P; Verma R C; Pathare P B. 2005. Thin-layer infrared radiation drying of onion slices. J. Food Eng., 67(3), 361-366.

Sharma S K; Singh R S; Bhargava R. 2014. Scope of arid horticulture in hot arid regions. In: Efficient Supply Chain Management and Marketing of Horticulture Produce in Dry Regions (Eds. Tewari P; Singh A; Srivastava S; Manjunath B L), ICAR-CAZRI, Jodhpur, 233-239.

Shen F; Peng L; Zhang Y; Wu J; Zhang X; Yang G; Peng H; Qi H; Deng S. 2011. Thin-layer drying kinetics and quality changes of sweet sorghum stalk for ethanol production as affected by drying temperature. Indian Crops Prod., 34(3), 1588–1594.

Singh D; Singh A K; Singh S P; Poonia S. 2017. Economic analysis of parabolic solar concentrator based distillation unit. Indian J. Eco. Dev., 13(3), 569-575.

G D; Sharma R; Bawa A S; Saxena D C. 2008. Drying and rehydration characteristics of water chestnut (Trapanatans) as a function of drying air temperature. J. Food Eng., 87(2), 213-221.

Sodha M S; Chandra R. 1994. Solar drying systems and their testing procedures: A review. Energy Convers. Manage., 35, 219–267.

Sodha M S; Chandra R; Pathak K; Singh N P; Bansal N K. 1991. Technoeconomic analysis of typical dryers.Energy Convers. Manage., 31(6), 509-13.

Sonkariya V; Singh S P; Nirgude V. 2016. Response of potassium compounds on post-harvest life of ber cv. banarasi karaka. The Bioscan, 11(1), 151-153.

Tiwari A; Sodha M S. 2006. Performance evaluation of solar PV/T system. An experimental validation. Sol. Energy, 80 (7), 751–759.

Tiwari S; Tiwari G N; Al-Helal I M. 2016. Performance analysis of photovoltaic–thermal (PVT) mixed mode greenhouse solar dryer. Sol. Energy, 133, 421–428.

Toğrul İ T; Pehlivan D. 2002. Mathematical modeling of solar drying of apricots in thin layers. J. Food Eng., 55(3), 209–216.

Tonui J K; Tripanagnostopoulos Y. 2007. Air-cooled PV/T solar collectors with low cost performance improvements. Sol. Energy, 81 (4), 498–511.

Tunde-Akintunde T Y. 2011. Mathematical modeling of sun and solar drying of chilli pepper. Renew. Energy, 36, 2139-2145.

Tunde-Akintunde T Y; Afolabi T J; Akintunde B O. 2005. Influence of drying methods on drying of bell-pepper (Capiscum annuum). J. Food Eng., 68(4), 439-442.

Wang Z; Sun J; Liao X; Chen F; Zhao G; Wu J; Hu X. 2007. Mathematical modeling on hot air drying of thin layer apple pomace. Food Res. Int., 40(1), 39–46.

Yang Z; Zhu E. 2015. Water desorption isotherm and drying characteristics of green soybean. J. Stored Prod. Res., 60, 25–30.

Yi X K; Wen-Fu Wu Yi; Zhang Y Q; Li J X; Luo H P. 2012. Thin-layer drying characteristics and modeling of chinese jujubes. Math. Probl. Eng., 1, 1-18.

Zielinska M; Markowski M. 2010. Air drying characteristics and effective moisture diffusivity of carrots. Chem. Eng. Process., 49, 212–218.

Zondag H A. 2008. Flat-plate PV-Thermal collectors and systems: A review. Renew. Sustain. Energy Rev., 12, 891–959.

Published

2018-12-31

Issue

Section

Regular Issue

How to Cite

Surendra Poonia, A.K. Singh, & Dilip Jain. (2018). Mathematical Modelling and Techno-economic Evaluation of Hybrid Photovoltaic-thermal Forced Convection Solar Drying of Indian Jujube (Zizyphus mauritiana). Journal of Agricultural Engineering (India), 55(4), 74-88. https://doi.org/10.52151/jae2018554.1671