Characterization of Natural Fibre-based Nano-composite Materials: A Review

Authors

  • Dattatreya M. Kadam Principal Scientist, ICAR-Central Institute for Research on Cotton Technology, Matunga (East), Mumbai-400019, Maharashtra, India Author
  • Amanpreet Kaur Senior Research Fellow, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana-141004, Punjab, India Author
  • Akansha Kasara Junior Research Fellow, ICAR-Central Institute for Research on Cotton Technology, Matunga (East), Mumbai-400019, Maharashtra, India Author

DOI:

https://doi.org/10.52151/jae2022592.1773

Keywords:

Cellulose, DSC, fibre, nano-composite, SEM, TEM, thermal properties

Abstract

A composite material is produced from two (or more) distinct constituent materials with different physical and chemical properties, which together result in a material with entirely different properties. Natural biopolymer packaging leads to new product developments in the food packing and packaging industry, which includes carriers for functionally active substances, individual packaging of particulate foods and nutritional supplements. The nanocomposite material has a range of benefits in the extrusion procedure of bottles for dairy foods, fruit juices, beer and carbonated drinks in which it plays a role of oxygen barrier; or its layers to act as an enhancer of shelf life in variety of products such as cheese, cereals, processed meats, boil-in-bag foods and confectionary items. In order to utilize these benefits of nanocomposite material for a particular use, one needs to have an in-depth knowledge of the surface properties as well as internal structure, its chemical constituents and their interactions and its stability at high processing temperatures. Advanced instrumentation technologies like Field Emission Scanning Electron Microscopy (FE-SEM), Transmission electron microscopy (TEM), Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analyses (TGA), Nuclear Magnetic resonance (NMR) help researchers in examining all these characteristics for its specific application. The present review is focused on characterization of cellulosic fibres and cellulose nanocrystals derived from agricultural waste. This analysis also helps to understand the processes and changes accompanied with the process in these characteristics during production of cellulosic fibres and cellulose nano-crystals from agricultural waste.

References

Abdullah M A; Nazir M S; Raza M R; Wahjoedi B A; Yussof A W. 2016. Autoclave and ultra-sonication treatments of oil palm empty fruit bunch fibers for cellulose extraction and its polypropylene composite properties. J. Clean. Prod., 126, 686-697. https://doi.org/10.1016/j.jclepro.2016.03.107

Adel A M; Abd El-Wahab Z H; Ibrahim A A; AlShemy M T. 2011. Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties. Carbohydr. Polym., 83(2), 676-687. https://doi.org/10.1016/j.carbpol.2010.08.039

Alemdar A; Sain M. 2008. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties.compos. Sci. Technol., 68(2), 557-565. https://doi.org/10.1016/j.compscitech.2007.05.044

Alexandre M; Dubois P. 2000. Polymer-layered silicate nano composites: Preparation, properties and uses of a new class of materials. Mat. Sci. Eng. Rep., 28(1-2), 1-63. https://doi.org/10.1016/S0927-796X(00)00012-7

Arvanitoyannis I; Nakayama A; Aiba S I. 1998. Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohydr. Polym., 36(2-3), 105-119. https://doi.org/10.1016/S0144-8617(98)00017-4

Bharath K N; Basavarajappa S. 2016. Applications of biocomposite materials based on natural fibres from renewable resources: a review. Sci. Eng.compos. Mater., 23(2), 123-133. https://doi.org/10.1515/secm2014-0088

Bhatnagar A; Sain M. 2005. Processing of Cellulose Nanofibre-reinforced Composites. J. Reinf. Plast.compos., 24(12), 1259-1268. https://doi.org/10.1177%2F0731684405049864

Boonterm M; Sunyadeth S; Dedpakdee S; Athichalinthorn P; Patcharaphun S; Mungkung R; Techapiesancharoenkij R. 2016. Characterization and comparison of cellulose fibre extraction from rice straw by chemical treatment and thermal steam explosion. J. Clean. Prod., 134, 592-599. https://doi.org/10.1016/j.jclepro.2015.09.084

Bouchard J; Abatzoglou N; Chornet E; Overend R P. 1989. Characterization of depolymerized cellulosic residues. Wood Sci. Tech., 23(4), 343-355. https://link.springer.com/article/10.1007/BF00353250

Braun B; Dorgan J R. 2009. Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromol., 10(2), 334-341. http://doi/abs/10.1021/bm8011117

Brody A L. 2007. Nanocomposite technology in food packaging. Food Technol., 61(10), 80–83

Chandramohan D; Marimuthu K. 2010. Contribution of biomaterials to orthopaedics as bone implants- A review. Int. J. Mater. Sci., 5(3), 445-463.

Cherian B M; Pothan L A; Nguyen-Chung T; Mennig G; Kottaisamy M; Thomas S. 2008. A novel method for the synthesis of cellulose nanofibril whiskers from banana fibres and characterization. J. Agric. Food Chem., 56(14), 5617-5627. https://pubs.acs.org/doi/abs/10.1021/jf8003674

Chirayil C J; Joy J; Mathew L; Mozetic M; Koetz J; Thomas S. 2014. Isolation and characterization of cellulose nanofibrils from Helicteresisora plant. Ind. Crop Prod., 59, 27-34. https://doi.org/10.1016/j.indcrop.2014.04.020

Choi M; Kang Y R; Lim I S; Chang Y H. 2018. Structural characterization of cellulose obtained from extraction wastes of graviola (annona muricata) leaf. Prev. Nutr. Food Sci., 23(2), 166-170. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6047874/

Datta R; Tsai S. 1997. Lactic acid production and potential uses: a technology and economic assessment. In: Saha BC; Woodward J (Eds.) Fuels and Chemicals from Biomass. Am. Chem. Soc., Washington DC, 224–236.

Doran-Peterson J; Jangid A; Brandon S K; DeCrescenzo-Henriksen E; Dien B; Ingram L O. 2009. Simultaneous saccharification and fermentation and partial saccharification and cofermentation of lignocellulosic biomass for ethanol production. In: Mielenz J. (Ed.), Biofuels Methods in Molecular Biology (Methods and Protocols), Humana Press, Totowa, NJ, vol 581, 263-280. https://doi.org/10.1007/978-1-60761-214-8_17

Dufresne A; Cavaillé J Y; Vignon M R. 1997. Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J. Appl. Poly. Sci., 64(6), 1185-1194. https://doi.org/10.1002/(SICI)1097-4628(19970509)64:6%3C1185::AIDAPP19%3E3.0.CO;2-V

Ebringerová A; Heinze T. 2000. Xylan and xylan derivatives–biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol. Rapid.commun., 21(9), 542-556. https://doi.org/10.1002/1521-3927(20000601)21:9%3C542::AIDMARC542%3E3.0.CO;2-7

Eseyin A E; Steele P H. 2015. An overview of the applications of furfural and its derivatives. Int. J. Adv. Chem.,3(2), 42-47. http://hdl.handle.net/123456789/3244

Ferguson J; Diefenbeck M; McNally M. 2017. Ceramic biocomposites as biodegradable antibiotic carriers in the treatment of bone infections. J. Bone Joint Infect., 2(1), 38-51. https://doi.org/10.7150/jbji.17234

Fukuzumi H; Saito T; Iwata T; Kumamoto Y; Isogai A. 2009. Transparent and high gas barrier films of cellulose nanofibres prepared by TEMPO-mediated oxidation. Biomacromol., 10(1), 162-165. https://doi.org/10.1021/bm801065u

Ganjyal G M; Reddy N; Yang Y Q; Hanna M A. 2004. Biodegradable packaging foams of starch acetate blended with corn stalk fibres. J. Appl. Polym. Sci., 93(6), 2627-2633. https://doi.org/10.1002/app.20843

Geethamma V G; Mathew K T; Lakshminarayanan R; Thomas S. 1998.composite of short coir fibres and natural rubber: Effect of chemical modification, loading and orientation of fibre. Polym., 39(6-7), 1483-1491. https://doi.org/10.1016/S0032-3861(97)00422-9

Giannelis E P. 1996. Polymer layered silicate nanocomposites. Adv. Mat., 8(1), 29-35. https://doi.org/10.1002/adma.19960080104

Haafiz M M; Hassan A; Zakaria Z; Inuwa I M. 2014. Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydr. Polym., 103, 119-125. https://doi.org/10.1016/j.carbpol.2013.11.055

Herrera M A; Mathew A P; Oksman K. 2012.comparison of cellulose nanowhiskers extracted from industrial bio-residue and commercial microcrystalline cellulose. Mater. Lett., 71, 28-31. https://doi.org/10.1016/j.matlet.2011.12.011

Jallot E. 2004. Nanoscale Characterization of Biomaterials. In: Ed. Nalwa H S, Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, Los Angeles, Vol. 7, 405-491.

Jamshidian M; Tehrany E A; Imran M; Jacquot M; Desobry S. 2010. Poly-lactic acid: production, applications, nanocomposites, and release studies.compr. Rev. Food Sci. Food Saf., 9(5), 552-571. https://doi.org/10.1111/j.1541-4337.2010.00126.x

Johar N; Ahmad I; Dufresne A. 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Crop Prod., 37(1), 93-99. https://doi.org/10.1016/j.indcrop.2011.12.016

Jonoobi M; Khazaeian A; Tahir P M; Azry S S; Oksman K. 2011. Characteristics of cellulose nanofibres isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellul., 18(4), 1085-1095. https://link.springer.com/article/10.1007/s10570-011-9546-7

Kalita D; Baruah S. 2019. The Impact of Nanotechnology on Food. In Nanomaterials Applications for Environmental Matrices Elsevier, 369–379.https://doi.org/10.1016/B978-0-12-814829- 7.00011-2

Kallel F; Bettaieb F; Khiari R; García A; Bras J; Chaabouni S E. 2016. Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind. Crop Prod., 87, 287- 296. https://doi.org/10.1016/j.indcrop.2016.04.060

Khawas P; Deka S C. 2016. Isolation and characterization of cellulose nanofibres from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydr. Polym., 137, 608-616. https://doi.org/10.1016/j.carbpol.2015.11.020

Kumar A; Negi Y S; Choudhary V; Bhardwaj N K. 2014. Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J. Mater. Phys. Chem., 2(1), 1-8. http://doi.org/10.26438/jpcm

Kumar G C; Kumar P C; Gupta S; Sunder S M; Rao M V K; Jagadeesh B; Swapna V; Kamal A. 2015. Isolation and characterization of cellulose from sweet sorghum bagasse. Sugar Technol., 17(4), 395-403. https://doi.org/10.1007/s12355-014-0339-9

Leite A L; Zanon C D; Menegalli F C. 2017. Isolation and characterization of cellulose nanofibres from cassava root bagasse and peelings. Carbohydr. Polym., 157, 962-970. https://doi.org/10.1016/j.carbpol.2016.10.048

Li M; Wang L J; Li D; Cheng Y L; Adhikari B. 2014. Preparation and characterization of cellulose nanofibres from de-pectinated sugar beet pulp. Carbohydr. Polym., 102, 136-143. https://doi.org/10.1016/j.carbpol.2013.11.021

Lide D R. 1990. Molecular Structure and Spectroscopy. In: Handbook of Chemistry and Physics, 71st Ed. Boca Raton, FL: CRC Press, New York. 8–39.

Lim S K; Son T W; Lee D W; Park B K; Cho K M. 2001. Novel regenerated cellulose fibres from rice straw. J. Appl. Polym. Sci., 82(7), 1705-1708. https://doi.org/10.1002/app.2010

Liu C F; Ren J L; Xu F; Liu J J; Sun J X; Sun R C. 2006. Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse. J. Agric. Food Chem., 54(16), 5742-5748. https://pubs.acs.org/doi/abs/10.1021/jf060929o

Liu X; Lin Q; Yan Y; Peng F; Sun R; Ren J. 2019. Hemicellulose from plant biomass in medical and pharmaceutical application: A critical review. Curr. Med. Chem., 26(14), 2430-2455. https://doi.org/10.2174/0929867324666170705113657

Liu Y; Xie J; Wu N; Ma Y; Menon C; Tong J. 2019. Characterization of natural cellulose fibre from corn stalk waste subjected to different surface treatments. Cellul., 26(8), 4707-4719. https://link.springer.com/article/10.1007/s10570-019-02429-6

Maheswari C U; Reddy K O; Muzenda E; Guduri B R; Rajulu A V. 2012. Extraction and characterization of cellulose microfibrils from agricultural residue–Cocos nucifera L. Biomass Bioenergy, 46, 555-563. https://doi.org/10.1016/j.biombioe.2012.06.039

Majeed K; Jawaid M; Hassan A; Bakar A A; Khalil H A; Salema A A; Inuwa I. 2013. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater. Des., 46,391-410. https://doi.org/10.1016/j.matdes.2012.10.044

Majumdar P; Chanda S. 2001. Chemical profile of some lignocellulosic crop residues. Indian J. Agric. Biochem, 14(1), 29-33.

Markovska I; Lyubchev L. 2007. A study on the thermal destruction of rice husk in air and nitrogen atmosphere. J. Therm. Anal. Calorim., 89 (3), 809-814. https://doi.org/10.1007/s10973-007-8294-2

Matthey D; Wang J G; Wendt S; Matthiesen J; Schaub R; Laegsgaard E; Hammer B; Besenbacher F. 2007. Enhanced bonding of gold nanoparticles on oxidized TiO2 (110). Sci., 315(5819), 1692-1696. https://doi.org/10.1126/science.1135752

Moraru C I; Panchapakesan C P; Huang Q; Takhistov P; Liu S; Kokini J L. 2003. Nanotechnology: a new frontier in food science understanding the special properties of materials of nanometer size will allow food scientists to design new, healthier, tastier, and safer foods. Food Technol., 57(12), 24-29.

Nalwa H S. 2003. In Handbook of organic-inorganic hybrid materials and nanocomposites (Vol. 2) (Ed.), American Scientific Publishers, Los Angeles, CA, USA, pp. 186-196.

Nalwa H S. 2004. In Encyclopedia of Nanoscience and Nanotechnology (V. 7. Nano Me-T) (Ed). American Scientific Publishers, Los Angeles.

Neto W P F; Silvério H A; Dantas N O; Pasquini D. 2013. Extraction and characterization of cellulose nanocrystals from agro-industrial residue–Soy hulls. Ind. Crop Prod., 42, 480-488. https://doi.org/10.1016/j.indcrop.2012.06.041

Nuruddin M; Chowdhury A; Haque S A; Rahman M; Farhad S F; Jahan M S; Quaiyyum A. 2011. Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative. Biomater., 3, 5-6.

Okolie J A; Nanda S; Dalai A K; Kozinski J A. 2021. Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valorization, 12(5), 2145-2169.https://link.springer.com/article/10.1007/s12649-020-01123-0

Ozdemir M; Floros J D. 2004. Active food packaging technologies. Crit. Rev. Food Sci. Nutr.,44(3), 185-193. https://doi.org/10.1080/10408690490441578

Pal P K. 1984. Jute reinforced plastics: A low cost composite material. Plast. Rubber Process. Appl., 4 (3), 215-219.

Paolucci M; Fasulo G; Volpe M G. 2015. Employment of marine polysaccharides to manufacture functional biocomposites for aquaculture feeding applications. Mar. Drugs, 13(5), 2680-2693. https://doi.org/10.3390/md13052680

Park S; Baker J O; Himmel M E; Parilla P A; Johnson D K. 2010. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol.Biofuels, 3, 1-10. https://link.springer.com/article/10.1186/1754-6834-3-10

Prado K S; Spinacé M A. 2019. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. Int. J. Biol. Macromol., 122, 410-416. https://doi.org/10.1016/j.ijbiomac.2018.10.187

Prasanna N S; Mitra J. 2020. Isolation and characterization of cellulose nanocrystals from Cucumis sativus peels. Carbohydr. Polym., 247, 116706. https://doi.org/10.1016/j.carbpol.2020.116706

Rahman N H A; Chieng B W; Ibrahim N A; Rahman N A. 2017. Extraction and characterization of cellulose nano crystals from tea leaf waste fibers. Polym., 9 (11), 588. https://doi.org/10.3390/polym9110588

Ramos Ó L; Pereira R N; Cerqueira M A; Martins J R; Teixeira J A; Malcata F X; Vicente A A. 2018. Bio-based nanocomposites for food packaging and their effect in food quality and safety. In: Food Packaging and Preservation, Academic Press, 271-306. https://doi.org/10.1016/B978-0-12-811516-9.00008-7

Ray S S; Yamada K; Okamoto M; Ueda K. 2002. Polylactide-layered silicate nanocomposite: A novel biodegradable material. Nano Letters, 2(10), 1093- 1096. https://doi.org/10.1021/nl0202152

Reddy N; Yang Y. 2005. Biofibres from agricultural by-products for industrial applications. Trends Biotechnol., 23(1), 22-27. https://doi.org/10.1016/j.tibtech.2004.11.002

Reddy N; Yang Y. 2007. Preparation and characterization of long natural cellulose fibres from wheat straw. J. Agric. Food Chem., 55(21), 8570-8575. https://doi.org/10.1021/jf071470g

Rhim J W. 2011. Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydr. Polym., 86(2), 691- 699. https://doi.org/10.1016/j.carbpol.2011.05.010

Rodriguez L J; Pecas P; Carvalho H; Orrego C E. 2020. A literature review on life cycle tools fostering holistic sustainability assessment: An application in biocomposite materials. J. Environ. Manage., 262, 110308. https://doi.org/10.1016/j.jenvman.2020.110308

Roman M; Winter W T. 2004. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol., 5(5), 1671-1677. https://doi.org/10.1021/bm034519

Rosa S M; Rehman N; de Miranda M I; Nachtigall S M; Bica C I. 2012. Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr. Polym., 87(2), 1131-1138. https://doi.org/10.1016/j.carbpol.2011.08.084

Roy S; Kim H C; Kim J W; Zhai L; Zhu Q Y; Kim J. 2020. Incorporation of melanin nanoparticles improves UV-shielding, mechanical and antioxidant properties of cellulose nano fiber based nano composite films. Mater. Today Commun., 24, 100984. https://doi.org/10.1016/j.mtcomm.2020.100984

Sheltami R M; Abdullah I; Ahmad I; Dufresne A; Kargarzadeh H. 2012. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr. Polym., 88(2), 772-779. https://doi.org/10.1016/j.carbpol.2012.01.062

Silva D D J; D’Almeida M L O. 2009. Nanocristais de cellulose. Revista O papel, 70(7), 34-52.

Silvério H A; Neto W P F; Dantas N O; Pasquini D. 2013. Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind. Crop Prod., 44, 427-436. https://doi.org/10.1016/j.indcrop.2012.10.014

Šimon P; Chaudhry Q; Bakos D. 2008. Migration of engineered nanoparticles from polymer packaging to food-a physicochemical view. J. Food Nutri. Res., 47(3), 105–113.

Sorrentino A; Gorrasi G; Vittoria V. 2007. Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci. Technol., 18(2), 84-95. https://doi.org/10.1016/j.tifs.2006.09.004

Stenstad P; Andresen M; Tanem B S; Stenius P. 2008. Chemical surface modifications of microfibrillated cellulose. Cellul., 15(1), 35-45. https://doi.org/10.1007/s10570-007-9143-y

Sun R C; Tomkinson J; Wang Y X; Xiao B. 2000. Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxide extraction. Polym., 41(7), 2647-2656. https://doi.org/10.1016/S0032-3861(99)00436-X

Sundarraj A A; Ranganathan T V. 2018. A review on cellulose and its utilization from agro-industrial waste. Drug Invent. Today, 10 (1), 89-94.

Sundstrom D W; Klei H E. 1982. Uses of by-product lignins from alcohol fuel processes. In: Biotechnology Bioengineering Symposium, United States, University of Connecticut, Storrs, Vol. 24, No. CONF-820580, 12, 45–56.

Tang L; Huang B; Lu Q; Wang S; Ou W; Lin W; Chen X. 2013. Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid. Bioresour. Technol.,127, 100-105. https://doi.org/10.1016/j.biortech.2012.09.133

Teixeira de Morais E; Corrêa A C; Manzoli A; de Lima Leite F; de Oliveira C R; Mattoso L H. 2010. Cellulose nanofibres from white and naturally colored cotton fibres. Cellul., 17(3), 595-606. https://doi.org/10.1007/s10570-010-9403-0

Thakur V K. 2013. Green Composites from Natural Resources (Ed.). CRC Press, Taylor and Francis, Boca Raton, London, New York, USA, pp. 419. ISBN: 9781466570696.

Thakur V K; Singha A S. 2013. Biomass-based Biocomposites (Eds.), Smithers RapraPublishing, UK, pp: 355.

Thakur V K; Thakur M K. 2014. Processing and characterization of natural cellulose fibres/thermoset polymer composites. Carbohydr. Polym., 109, 102-117. https://doi.org/10.1016/j.carbpol.2014.03.039

Tharanathan R N. 1995. Starch: The polysaccharide of high abundance and usefulness. J. Sci. Ind. Res., 54(8), 452-458. http://ir.cftri.res.in/id/eprint/5486

Tharanathan R N; Saroja N. 2001. Hydrocolloidbased packaging films—alternate to synthetic plastics. J. Sci. Ind. Res., 60, 547–559. http://nopr.niscair.res.in/handle/123456789/26517.

Thygesen A; Oddershede J; Lilholt H; Thomsen A B; Ståhl K. 2005. On the determination of crystallinity and cellulose content in plant fibres. Cellul., 12(6), 563-576. https://doi.org/10.1007/s10570-005-9001-8

Vasić K; Knez Ž; Leitgeb M. 2021. Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources. Mol., 26(3), 753. https://doi.org/10.3390/molecules26030753

Wu L; Sun J; Wu M. 2017. Modified cellulose membrane prepared from corn stalk for adsorption of methyl blue. Cellul., 24(12), 5625-5638. https://doi.org/10.1007/s10570-017-1523-3

Xu W; Reddy N; Yang Y. 2009. Extraction, characterization and potential applications of cellulose in corn kernels and distillers’ dried grains with solubles (DDGS). Carbohydr. Polym., 76(4), 521-527. https://doi.org/10.1016/j.carbpol.2008.11.017

Yang L; Yee W A; Phua S L; Kong J; Ding H; Cheah J W; Lu X. 2012. A high throughput method for preparation of highly conductive functionalized graphene and conductive polymer nanocomposites. RSC Adv., 2(6), 2208-2210. https://doi.org/10.1039/C2RA00798C

Yildizhan Ş; Çalik A; Özcanli M; Serin H. 2018. Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications. Eu. Mech. Sci., 2(3), 83-91. https://doi.org/10.26701/ems.369005

Youngquist J A; Krzysik A M; English B W; Spelter H N; Chow P. 1996. Agricultural fibres for use in building components. In: Proceedings of the Conference on the Use of Recycled Wood and Paper in Building Applications, 123-134.

Zhang S; Dong Y; Chen M; Xu Y; Ping J; Chen W; Liang W. 2020. Recent developments in strontiumbased biocomposites for bone regeneration. J. Artif. Organs., 23(3), 191-202. https://doi.org/10.1007/s10047-020-01159-y

Published

2022-07-11

Issue

Section

Regular Issue

How to Cite

Dattatreya M. Kadam, Amanpreet Kaur, & Akansha Kasara. (2022). Characterization of Natural Fibre-based Nano-composite Materials: A Review. Journal of Agricultural Engineering (India), 59(2), 159-178. https://doi.org/10.52151/jae2022592.1773