Pyrolysis Kinetics of Lignocellulosic Waste Biomass (Cicer arietinum) using Iso-conversional Methods

Authors

  • Sunil L. Narnaware College of Technology and Engineering, Maharana Pratap University of Technology and Agriculture, Udaipur, Rajasthan-313001 Author
  • N. L. Panwar College of Technology and Engineering, Maharana Pratap University of Technology and Agriculture, Udaipur, Rajasthan-313001 Author

DOI:

https://doi.org/10.52151/jae2022593.1783

Keywords:

Activation energy, iso-conversional method, kinetic analysis, pyrolysis, TGA

Abstract

A study on kinetic analysis of Bengal gram stalk (BGS), an agricultural waste biomass, was carried out using thermogravimetric analyser in an inert atmosphere. Thermogravimetric (TG) and Derivative thermogravimetric (DTG) curves were obtained by varying heating rates at 10°C.min−1, 20°C.min−1, 30°C.min−1, and 40°C.min−1. Three iso-conversional methods viz. Flynn- Ozawa-Wall, Kissinger-Akahira-Sunose, and Starink were applied to determine the kinetic properties and simultaneously obtained the effective activation energies for BGS pyrolysis. The average activation energy (Eα) calculated for BGS was 113.37 kJ.mol-1 for FWO; 109.47 kJ.mol-1 for KAS, and 112.36 kJ.mol-1 for Starink method, respectively. The results showed that the effective activation energies for the pyrolysis of BGS varied with the degree of conversion (α) in the range of 0.1 to 1.0. The experimental analysis revealed the correlation between activation energy and conversion factor.

References

Abu Bakar M S; Titiloye J O. 2013. Catalytic pyrolysis of rice husk for bio-oil production. J. Anal. Appl. Pyrolysis, 103, 362-368.

Açıkalın K. 2021. Determination of kinetic triplet, thermal degradation behaviour and thermodynamic properties for pyrolysis of a lignocellulosic biomass. Bioresour. Technol., 337, 125438. https://doi.org/10.1016/j.biortech.2021.125438

Adams P; Bridgwater T; Lea-Langton A; Ross A; Watson I. 2018. Greenhouse gas balance of bioenergy In: Thornley P; Adams P (Eds.), System Biomass Conversion Technologies., Academic Press, Cambridge, 107-139. https://doi.org/10.1016/B978-0-08-101036-5.00008-2

Akahira T; Sunose T T. 1971. Joint Convention of Four Electrical Institutes. Research Report, Chiba Institute of Technology, Chiba, 16, 22-31.

Akhtar A; Krepl V; Ivanova T. 2018. A combined overview of combustion, pyrolysis, and gasification of biomass. Energy Fuels, 32, 7294–7318.

AlNouss A; McKay G; Al-Ansari T. 2019. A techno-economic-environmental study evaluating the potential of oxygen-steam biomass gasification for the generation of value-added products. Energy Convers. Manage., 196, 664–676. https://doi.org/10.1016/j.enconman.2019.06.019

Braga R M; Melo D M A; Aquino F M; Freitas J C O; Melo M A F; Barros J M F; Fontes M S B. 2013. Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass. J. Therm. Anal. Calorim., 115, 1915-1920.

Brown M E. 1988. Reaction Kinetics from Thermal Analysis. Introduction to Thermal Analysis., 127–151. Springer, Dordrecht. https://doi.org/10.1007/978-94- 009-1219-9_13

Cai J; Xu D; Dong Z; Yu X; Yang Y; Banks S W; Bridgwater A V. 2018. Processing thermogravimetric analysis data for is conversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk. Renewable Sustain. Energy Rev., 82, 2705-2715.

Carrier M; Auret L; Bridgwater A; Knoetze J H. 2016. Using apparent activation energy as a reactivity criterion for biomass pyrolysis. Energy Fuels, 30, 7834-7841.

Castello D; Pedersen T H; Rosendahl L A. 2018. Continuous hydrothermal liquefaction of biomass: A critical review. Energies, 11, 3165. https://doi.org/10.3390/en11113165

Ceylan S; Kazan D. 2015. Pyrolysis kinetics and thermal characteristics of microalgae nannochloropsis oculata and Tetraselmis sp. Bioresour. Technol., 187, 1-5.

Channiwala S A; Parikh P P. 2002. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81, 1051-1063.

Chen D; Shuang E; Liu L. 2017. Analysis of pyrolysis characteristics and kinetics of sweet sorghum bagasse and cotton stalk. J. Therm. Anal. Calorim., 131, 1899- 1909.

Cheng Q; Jiang M; Chen Z; Wang X; Xiao B. 2016. Pyrolysis and kinetic behavior of banana stem using thermogravimetric analysis. Energy Sour. Part A: Recovery Util. Environ. Eff.,, 38, 3383-3390.

Cheng T C; Guo R M: Jo-Han N, William W F C: Farid N A: Su S L; Hwai C O. 2019. Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis. Energy Convers. Manage., 180, 1260-1267.

Chong C T; Mong G R; Ng J H; Chong W W F; Ani F N; Lam S S; Ong H C. 2019. Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis. Energy Convers. Manage., 180, 1260-1267.

Daugaard D E; Brown R C. 2003. Enthalpy for pyrolysis for several types of biomass. Energy Fuels, 17, 934-939.

De Caprariis B; Santarelli M L; Scarsella M; Herce C; Verdone N; De Filippis P. 2015. Kinetic analysis of biomass pyrolysis using a double distributed activation energy model. J. Therm. Anal. Calorim., 121, 1403- 1410.

Dhyani V; Bhaskar T. 2018. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 129, 695-716.

Di Blasi C. 2008. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci., 34, 47–90.

Di Blasi C. 2009. Combustion and gasification rates of lignocellulosic chars. Prog. Energy Combust. Sci., 35 (2), 121-140.

Díez D; Urueña A; Piñero R; Barrio A; Tamminen T. 2020. Determination of hemicellulose, cellulose, and lignin content in different types of biomasses by thermogravimetric analysis and pseudocomponent kinetic model (TGA-PKM Method). Process., 8(9), 1048. https://doi.org/10.3390/pr8091048

Eke J; Onwudili J A; Bridgwater A V. 2020. Influence of moisture contents on the fast pyrolysis of trommel fines in a bubbling fluidized bed reactor. Waste and Biomass Valorization, 11, 3711-3722.

El-Sayed S A; Khairy M. 2015. Effect of heating rate on the chemical kinetics of different biomass pyrolysis materials, Biofuels, 6, 157-170.

Faaij A. 2006. Modern Biomass Conversion Technologies. Mitigation Adapt. Strategies for Global Change, 11, 343-375.

Flynn J H; Wall L A. 1966. A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. Part B Polym. Lett., 4, 323-328.

Gajera B; Panwar N L. 2019. Pyrolysis and kinetic behaviour of black gram straw using thermogravimetric analysis, Energy Sources Part A Recovery Util. Environ. Eff., 1-14. https://doi.org/10.1080/1556703 6.2019.1662138

Giuliano A; Freda C; Catizzone E. 2020. Technoeconomic assessment of bio-syngas production for methanol synthesis: A focus on the water–gas shift and carbon capture sections. Bioeng., 7, 1-19.

Guerrero M R B; Paula M M S; Zaragoza M M; Gutiérrez J S; Velderrain V G; Ortiz A L; Martínez V C. 2014. Thermogravimetric study on the pyrolysis kinetics of apple pomace as waste biomass. Int. J. Hydrogen Energy, 39, 16619-16627. https://doi.org/10.1016/j.ijhydene.2014.06.012

Gupta G K; Mondal M K. 2019. Kinetics and thermodynamic analysis of maize cob pyrolysis for its bioenergy potential using thermogravimetric analyser. J. Therm. Anal. Calorim., 137(4), 1-12. https://doi.org/10.1007/s10973-019-08053-7

Huang L; Liu J; He Y; Sun S; Chen J; Sun J; Chang K L; Kuo J; Ning X. 2016. Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2 /O2 atmosphere as biomass to solid biofuel. Bioresour. Technol., 218, 631-642.

Jagnade P; Panwar N.L; Agarwal C. 2022. Experimental investigation of kinetic parameters of bamboo and bamboo biochar using thermogravimetric analysis under non-isothermal conditions. BioEnergy Res., 10497. https://doi.org/10.1007/s12155-022-0497-z

Kan T; Strezov V; Evans T J. 2016. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Rev., 57, 1126-1140.

Kang L; Zhang Y; Ma L; Wang B; Fan M; Li D; Zhang R. 2022. The roles of Rh crystal phase and facet in syngas conversion to ethanol. Chem. Eng. Sci., 248, 117186. https://doi.org/10.1016/j.ces.2021.117186

Kaur R; Gera P; Jha M K; Bhaskar T. 2018. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresource Technol., 250, 422-428.

Khan A S; Man Z; Bustam M A; Kait C F; Ullah Z; Nasrullah A; Khan M I; Gonfa G; Ahmad P; Muhammad N. 2016. Kinetics and thermodynamic parameters of ionic liquid pretreated rubber wood biomass. J. Mol. Liq., 223, 754-762.

Kissinger H E. 2002. Reaction kinetics in differential thermal analysis. Anal. Chem., 29, 1702–1706. Kongkaew N; Pruksakit W; Patumsawad S. 2015. Thermogravimetric kinetic analysis of the pyrolysis of rice straw. Energy Procedia, 79, 663-670.

Kumar R; Strezov V; Weldekidan H; He J; Singh S; Kan T; Dastjerdi B. 2020. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renewable and Sustainable Energy Rev., 123, 109763. https://doi.org/10.1016/j.rser.2020.109763

Lapuerta M; Hernández J J; Rodríguez J. 2004. Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis. Biomass Bioenergy, 27, 385-391.

Li C; Aston J E; Lacey J A; Thompson V S; Thompson D N. 2016. Impact of feedstock quality and variation on biochemical and thermochemical conversion. Renewable and Sustainable Energy Rev., 65, 525-536.

Maia A A D; de Morais L C. 2016. Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresour. Technol., 204, 157-163.

Maiti S; Purakayastha S; Ghosh B. 2007. Thermal characterization of mustard straw and stalk in nitrogen at different heating rates. Fuel, 86, 1513-1518.

Mohan D; Pittman C U; Steele P H. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels, 20(3), 848-889.

Müsellim, E; Tahir M H; Ahmad M S; Ceylan S. 2018. Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis. Appl. Therm. Eng., 137, 54-61. https://doi.org/10.1016/j.applthermaleng.2018.03.050

Narnaware S L; Panwar N L. 2022. Kinetic study on pyrolysis of mustard stalk using thermogravimetric analysis. Bioresour. Technol. Rep., 17, 100942. https://doi.org/10.1016/j.biteb.2021.100942

Neves D; Thunman H; Matos A; Tarelho L; GómezBarea A. 2011. Characterization and prediction of biomass pyrolysis products. Prog. Energy Combust. Sci., 37, 611-630.

Ozawa T. 1965. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Japan, 38, 1881-1886.

Ozturk M; Saba N; Altay V; Iqbal R; Hakeem K R; Jawaid M; Ibrahim F H. 2017. Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia. Renewable Sustainable Energy Rev., 79, 1285-1302.

Parthasarathy P; Fernandez A: Ansari T A; Mackey H R; Rodriguez R; McKay G. 2021. Thermal degradation characteristics and gasification kinetics of camel manure using thermogravimetric analysis. J. Environ. Manage., 287, 112345. https://doi.org/10.1016/j.jenvman.2021.112345

Popp J; Kovács S; Oláh J; Divéki Z; Balázs E. 2021. Bioeconomy: Biomass and biomass-based energy supply and demand. New. Biotechnol.., 60, 76-84. Rathore N S; Panwar N L; Yettou F; Gama A. 2019. A comprehensive review of different types of solar photovoltaic cells and their applications. Int. J. Ambient Energy, 42, 1200-1217.

Rathore N S; Pawar A; Panwar N L. 2021. Kinetic analysis and thermal degradation study on wheat straw and its biochar from vacuum pyrolysis under non-isothermal condition. Biomass Convers. Biorefin., 1–13. https://doi.org/10.1007/s13399-021-01360-w

Rego F; Dias A P S; Casquilho M; Rosa F C; Rodrigues A. 2019. Fast determination of lignocellulosic composition of poplar biomass by thermogravimetry. Biomass Bioenergy, 122, 375-380.

Reis J S; Rayanne O A; Victoria M R L; de Souza L K C. 2019. Combustion properties of potential Amazon biomass waste for use as fuel. J. Therm. Anal. Calorim., 138, 3535–3539.

Saddawi A; Jones J M; Williams A; Wójtowicz M A. 2009. Kinetics of the thermal decomposition of biomass. Energy Fuels, 24, 1274-1282.

Sayed E T; Wilberforce T; Elsaid K; Rabaia M K H; Abdelkareem M A; Chae K J; Olabi A G. 2021. A critical review on environmental impacts of renewable energy systems and mitigation strategies: Wind, hydro, biomass and geothermal. Sci. Total Environ., 766, 144505. https://doi.org/10.1016/j.scitotenv.2020.144505

Seo D K; Park S S; Hwang J; Yu T U. 2010. Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J. Anal. Appl. Pyrolysis, 89, 66–73.

Shahbeig H; Nosrati M. 2020. Pyrolysis of municipal sewage sludge for bioenergy production: Thermokinetic studies, evolved gas analysis, and technosocio-economic assessment. Renewable Sustainable Energy Rev., 119, 109567. https://doi.org/10.1016/j.rser.2019.109567

Silva J E; Calixto G Q; de Almeida C C; Melo D M A; Melo M A F; Freitas J C O; Braga R M. 2019. Energy potential and thermogravimetric study of pyrolysis kinetics of biomass wastes. J. Therm. Anal. Calorim., 137, 1635-1643.

Singh R K; Patil T; Pandey D; Sawarkar A N. 2021. Pyrolysis of mustard oil residue: A kinetic and thermodynamic study. Bioresour. Technol., 339, 125631. DOI:10.1016/j.biortech.2021.125631

Singh R K; Patil T; Sawarkar A N. 2020. Pyrolysis of garlic husk biomass: Physico-chemical characterization, thermodynamic and kinetic analyses. Bioresour. Technol. Rep., 12, 100558. https://doi.org/10.1016/j.biteb.2020.100558

Skreiberg A; Skreiberg O; Sandquist J; Sørum L. 2011. TGA and macro-TGA characterisation of biomass fuels and fuel mixtures. Fuel, 90, 2182-2197.

Slopiecka K; Bartocci P; Fantozzi F. 2012. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl. Energy, 97, 491-497.

Starink M J. 2003. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochemica Acta, 404, 163-176.

Tahir M H; Zhao Z; Ren J; Rasool T; Naqvi S R. 2019. Thermo-kinetics and gaseous product analysis of banana peel pyrolysis for its bioenergy potential. Biomass Bioenergy, 122, 193-201.

Tanger P; Field J L; Jahn C E; DeFoort M W; Leach J E. 2013. Biomass for thermochemical conversion: Targets and challenges. Front. Plant Sci., 4, 1-20. https://doi.org/10.3389/fpls.2013.00218

Varma A K; Singh S; Rathore A K; Thakur L S; Shankar R; Mondal P. 2020. Investigation of kinetic and thermodynamic parameters for pyrolysis of peanut shell using thermogravimetric analysis. Biomass Convers. Biorefin., 1-12. https://doi.org/10.1007/s13399-020-00972-y

Vlaev L T; Georgieva V G; Genieva S D. 2007. Products and kinetics of non-isothermal decomposition of vanadium (IV) oxide compounds. J. Therm. Anal. Calorim., 88, 805-812.

Wang S; Dai G; Yang H; Luo Z. 2017. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog. Energy Combust. Sci., 62, 33-86.

White J E; Catallo W J; Legendre B L. 2011. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrolysis, 91, 1-33.

White R H; Dietenberger M A. 2001. Wood products: Thermal degradation and fire. Encyclopaedia Mater.: Sci. Technol., Elsevier Science Ltd, 9712-9716.

Yamakawa C K; Qin F; Mussatto S I. 2018. Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy. Biomass Bioenergy, 119, 54-60.

Yang H; Yan R; Chen H; Lee D H; Zheng C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86 (12-13), 1781-1788.

Ye L; Zhang J; Zhao J; Luo Z; Tu S; Yin Y. 2015. Properties of biochar obtained from pyrolysis of bamboo shoot shell. J. Anal. Appl. Pyrolysis, 114, 172-178.

Yogalakshmi K N; Devi T P; Sivashanmugam P; Kavitha S; Kannah R Y; Sunita V; Kumar A; Kumar G; Banu R J. 2022. Lignocellulosic biomass-based pyrolysis: A comprehensive review. Chemosphere, 286, 131824. https://doi.org/10.1016/j.chemosphere.2021.131824

Yuan R; Yu S; Shen Y., 2019. Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues. Waste Manage., 87, 86-96.

Zabaniotou A; Ioannidou O; Antonakou E; Lappas A. 2008. Experimental study of pyrolysis for potential energy, hydrogen and carbon material production from lignocellulosic biomass. Int. J. Hydrogen Energy, 33, 2433-2444.

Published

2022-09-30

Issue

Section

Regular Issue

How to Cite

Sunil L. Narnaware, & N. L. Panwar. (2022). Pyrolysis Kinetics of Lignocellulosic Waste Biomass (Cicer arietinum) using Iso-conversional Methods. Journal of Agricultural Engineering (India), 59(3), 293-308. https://doi.org/10.52151/jae2022593.1783