Design, Development, and Performance Optimization of Farm Level Black Gram Dehuller

Authors

  • G. N. Shelke Dr. Annasaheb Shinde College of Agricultural Engineering and Technology, Mahatma Phule Agricultural University, Rahuri, Maharashtra-413 722, India Author
  • T. Pandiarajan Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu-641 003, India Author
  • R. U. Modi ICAR-Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh-226 002, India Author
  • N. Indore ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana, Punjab-141 004, India Author
  • V. P. Kad Dr. Annasaheb Shinde College of Agricultural Engineering and Technology, Mahatma Phule Agricultural University, Rahuri, Maharashtra-413 722, India Author

DOI:

https://doi.org/10.52151/jae2022593.1780

Keywords:

Black gram, dehulling efficiency, farm level huller, optimization

Abstract

Small-scale farmers in India and other developing countries have been using traditional stone local dehuller (chakki) for pulse milling, which is extremely slow and less effective. In this study, a low-cost and easy-to-operate farm-level pulse dehuller was developed to enhance farm mechanization in the processing sector. The performance of the developed dehuller was evaluated using three independent parameters, namely roller speed (19.47, 22.72, 25.97 m.s-1), feed rate (60, 90, 120 kg.h-1), and two emery rollers (Grit No. 40, Grit No. 50). To optimize the parameters, results were fitted in multi-level categorical general factorial design using design expert software. The maximum dehulling efficiency (84.62 %), maximum whole dehulled kernel (48.45 %), and minimum loss (2.78%) were obtained at roller speed of 19.47 m.s-1 and feed rate of 90 kg.h-1 with Grit No.50 roller. Compared to the traditional pulse dehulling process, the developed pulse dehuller could save 2.29 ₹ .Kg-1 in cost and 10.24 min.kg-1 in time.

References

Anon. 2021a. Agricultural Statistics at a Glance 2021. Directorate of Economics and Statistics, Department of Agriculture and Farmers Welfare, Ministry of Agriculture and Farmers Welfare, Government of India, New Delhi, pp: 431.

Anon. 2021b. Black gram Outlook Report. Agricultural Market Intelligence Centre, Acharya N.G. Ranga Agricultural University, https://angrau.ac.in/ANGRU/Agricultral-Market-Intelligence.aspx (Accessed on 09.09.2022).

Anon.2022a. Annual Report 2021-22. Department of Agriculture and Farmers Welfare, Ministry of Agriculture and Farmers Welfare, Government of India, New Delhi, pp: 303.

Anon. 2022b. Daily availability of pulses per capita in India FY 2011-2021. Statista Research Department, New York, NY 1000, United States, https://www.statista.com/statistics/980339/india-daily-availabilityof-pulses-per-capita/ (Accessed on 09.09.2022).

Ajayi A B; Olasunkanmi L K. 2013. Development of groundnut chaff removing machine. Int. J. Eng. Sci. Invent., 2, 45-51.

Bakane P; Jadhav P M; Naitam M P; Choudhari S Choudhary; Khotte S W; Mhase R M. 2017. Design and fabrication of multi-grain mini dal mill. Int. J. Adv. Res. Innov. Ideas Edu., 2(2), 1716-1720.

Chavan A N; Bhagat A D; Tiwari V K. 2020. Optimization of pre-milling treatments for pigeon pea dhal recovery using CIPHET mini dhal mill. Bio. Biotech. Res. Comm., 13(1), 15-22.

Dronachari M; Yadav B K. 2015. Application of microwave heat treatment in processing of pulses. J. Acad. Ind. Res., 3, 401-407.

Flordeliza L; Mercado T G; Aguinaldo H F; Gavino T T. 2016. Medium-scale multi-juice extractor for food processing. Int. J. Adv. Sci. Eng. Technol., 5(1), 106-111.

Goyal R K; Wanjari O D; Ilyas S M; Vishwakarma R K; Manikantan M R; Mridula D. 2005. Pulse Milling Technologies. Central Institute of Post Harvest Engineering and Technology, Ludhiana, India, Technical Pub. CIPHET/Pub/2005, pp: 99.

Hiregoudar S; Sandeep T N; Nidoni U; Shrestha B; Meda V. 2014. Studies on dhal recovery from pretreated pigeon pea (Cajanus cajan L.) cultivars. J. Food Sci. Technol., 51(5), 922-928.

Joyner J J; Yadav B K. 2015. Optimization of continuous hydrothermal treatment for improving the dehulling of Black gram (Vigna mungo L). J. Food Sci. Technol., 52(12), 7817-7827.

Lal R R; Varma P. 2007. Post-harvest Management of Pulses. ICAR-Indian Institute of Pulses Research, Kanpur. pp: 72. https://iipr.icar.gov.in/pdf/postbulletins2may13.pdf (Accessed 14.05.2021).

Mandhyan B L; Jain S K. 1993. Optimization of machine conditions for milling of pigeon pea. J. Food Eng., 18(1), 91-96.

Mangaraj S; Agrawal S; Kulkarni S D. 2004. Effect of pre-milling treatment and abrasive roller on milling of pulses. J. Agric. Eng., 41(4),10-15.

Mangaraj S; Singh K P. 2011. Optimization of machine parameters for milling of pigeon pea using RSM. Food Biopro. Technol., 4(5), 762-769.

Mathukia P R; Sangani V P; Mathukia R K. 2014. optimization of roller speed and feed rate of mini dhal mill for hulling efficiency of pigeon pea. Curr. Res. Nutr. Food Sci., 2(3), 176-181.

Maurya K K; Aalam M; Gautam R B. 2018. Comparison of economy of “PKV” dhal mill to traditional dhal mill. Int. Res. J. Eng. Technol., 5(7), 2106-2111.

Ojediran J O; Okonkwo C E; Alake S A; Alhassan E A; Olayanju A T. 2019. Design, development, and evaluation of a motorized rice grader. J. Food Process Eng., 43(2), e13336. https://doi.org/10.1111/jfpe.13336.

Okonkwo C E; Olaniran A; Ojediran J O; Olayanju T A; Ajao F; Alake A S. 2018. Design, development, and evaluation of locust bean seed dehuller. J. Food Process Eng., 42(3), 1-8.

Okunola A A; Arisoyin A G; Igbeak J C. 2015. Development and evaluation of a cereal cleaner. J. Multi. Disciple. Eng. Sci. Technol., 2(6), 1587-1592.

Rajkumar P; Indu R C; Visvanathan R. 2016. Development and evaluation of improved TNAU mini dhal mill. Agric. Mech. Asia Afr. Latin Am., 47(4), 60-65.

Rokade H N; Borkar P A; Surpam T B. 2019. Effect of abrasive emery rollers using various speeds on dehulling of Black gram (Vigna mungo). Int. J. Chem. Studies, 7(1), 2450–2453.

Sahay K M; Bisht B S. 1988. Development of a small abrasive cylindrical mill for milling pulses. Int. J. Food Sci. Technol., 23(1), 17-22.

Singh S K. 2005. Milling responses of green gram under batch processing. J. Agric. Eng., 42(4), 6-9.

Singh S K; Agrawal U S. 2002. Effect of processing parameters on green gram milling. J. Agric. Eng., 39(2), 21-26.

Shashi K C; Pradhan R C; Mishra S. 2016. Fabrication, performance evaluation and optimization of Sal (shorea robusta) seed decorticator. J. Food Process Eng., 40(3), 1-10.

Shelke G N; Pandiarajan T; Modi R U. 2019. Effect of moisture content on engineering properties of Black gram (Vigna mungo). Res. J. Agric. Sci., 10(1), 180- 184.

Sobowale S S; Adebiyi J A; Adebo O A. 2015. Design and performance evaluation of a melon sheller. J. Food Process Eng., 39(6), 676-682.

Sobowale S S; Adebiyi J A; Adebo O A. 2016. Design, construction, and performance evaluation of a gari roaster. J. Food Process Eng., 40(3), 1-6.

Tiwari B K; Jagan Mohan R; Vasan B S. 2007. Effect of heat processing on milling of Black gram and its end product quality. J. Food Eng., 78(1), 356-360.

Vishwakarma R K; Shivhare U S; Gupta R K; Yadav D N; Jaiswal A; Prasad P. 2017. Status of pulse milling processes and technologies: A review. Crit. Rev. Food Sci. Nutr., 58(10), 1615-1628.

Wani S K; Jha S K; Singh A; Shrivastava R; Jha G K; Sinha J P. 2011. Effect of pre-milling treatments on green gram dhal recovery. J. Agric. Eng., 48(4), 25-29.

Zameer H S; Ahad T; Rather A H; Naik H. R; Idrees S. 2016. Design fabrication and evaluation of walnut bleacher. J. Food Process Eng., 40(3), 1-9.

Published

2022-09-30

Issue

Section

Regular Issue

How to Cite

G. N. Shelke, T. Pandiarajan, R. U. Modi, N. Indore, & V. P. Kad. (2022). Design, Development, and Performance Optimization of Farm Level Black Gram Dehuller. Journal of Agricultural Engineering (India), 59(3), 251-268. https://doi.org/10.52151/jae2022593.1780