Effect of Hydraulic Loading Rate on Production of Tomato (Solanum Lycopersicum) with Pearlspot (Etroplus Suratensis) in Recirculating Aquaponic System

Authors

  • R. M. Peter Aquaculture Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri (W), Mumbai-400 061 Author
  • A. K. Verma Aquaculture Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri (W), Mumbai-400 061A. K. Verma Author
  • Neelam Saharan Aquaculture Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri (W), Mumbai-400 061 Author
  • V. K. Tiwari Aquaculture Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri (W), Mumbai-400 061 Author
  • M. H. Chandrakant Aquaculture Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri (W), Mumbai-400 061, India Author
  • R. M. Thomas Aquaculture Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri (W), Mumbai-400 061, India. Author

DOI:

https://doi.org/10.52151/jae2021581.1753

Keywords:

Pearlspot, tomato, recirculating aquaponic system, hydraulic loading rate

Abstract

An experiment was conducted to evaluate the effect of hydraulic loading rate (HLR) on tomato (Solanum Lycopersicum) with pearlspot (Etroplus suratensis) in a recirculating aquaponic system. The experiment consisted of three treatment groups with different HLR of 3 m.day-1 (T1), 6 m.day-1 (T2), and 12 m.day-1 (T3); while the control (C) group had HLR of 3 m.day-1 without plants. Tomato and pearlspot were stocked at 4 plants.m-2 and 0.86 kg.m-3 (142 no.m-3 with an average initial weight of 6.06±0.09 g), respectively. The results indicated that the HLR had profound influence on the growth of both plant and fish. Tomato growth was highest in T1 (1.60±0.04 kg.m-2), followed by T2 (1.35±0.05 kg.m-2) and T3 (1.09±0.069 kg.m-2). Pearlspot growth was highest in T2 (13.57±0.04 g), followed by T1 (13.48±0.04 g), T3 (13.17±0.01 g), and C (13.00±0.28 g). The removal of nitrate (65.71%), phosphate (46.43%), and potassium (62.74%) was highest in T1, followed by T2, T3, and C. Based on the tomato and pearlspot growth as well as the maximum nutrient removal, a HLR of 3.0 m.day-1 can be recommended for tomato and pearlspot production in an aquaponic system.

Author Biographies

  • R. M. Peter, Aquaculture Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri (W), Mumbai-400 061

    Ph.D. Scholar

  • A. K. Verma, Aquaculture Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri (W), Mumbai-400 061A. K. Verma

    Senior Scientist

  • Neelam Saharan, Aquaculture Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri (W), Mumbai-400 061

    Principal Scientist,

  • V. K. Tiwari, Aquaculture Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri (W), Mumbai-400 061

    Principal Scientist

  • M. H. Chandrakant, Aquaculture Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri (W), Mumbai-400 061, India

    Assistant Chief Technical Officer

  • R. M. Thomas, Aquaculture Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri (W), Mumbai-400 061, India.

    Ph.D. Scholar,

References

APHA. 2005. Standards Methods for the Examination of Water and Waste Water. 21st ed., American Public Health Association, Washington D C., pp: 1170.

Biswas G; Ghoshal T K; Natarajan M; Thirunavukkarasu A R; Sundaray J K; Kailasam M De D; Sukumaran K; Kumar P; Ponniah A G. 2013.Effects of stocking density and presence or absence of soil base on growth weight variation survival and body composition of pearlspot E troplus suratensis (Bloch) fingerlings. Aquacult. Res., 44(8), 1266-1276.

Chandrasekar S; Nich T; Tripathi G; Sahu N P; Pal A K; Dasgupta S. 2014. Acclimation of brackish water pearl spot (Etroplus suratensis) to various salinities: relative changes in abundance of branchial Na+/K+-ATPase and Na+/K+/2Cl−co-transporter in relation to osmoregulatory parameters. Fish Physiol. Biochem., 40(3), 983-996.

Conijn J G; Bindraban P S; Schröder J J; Jongschaap R E E. 2018. Can our global food system meet fodder and within planetary boundaries? Agric. Ecosyst. Environ., 251, 244-256.

Dediu L; Cristea V; Xiaoshuan Z. 2012. Waste production and valorization in an integrated aquaponic system with bester and lettuce. Afr. J. Biotechnol., 11(9), 2349-2358.

Endut A; Jusoh A; Ali N; Nik W W; Hassan A. 2010. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresour. Technol., 101(5), 1511-1517.

Endut A; Jusoh A; Ali N; Wan Nik; W N S; Hassan A. 2009. Effect of flow rate on water quality parameters and plant growth of water spinach (Ipomoea aquatica) in an aquaponic recirculating system. Desalin. Water Treat., 5, 19-28.

FAO. 2014. The State of World Fisheries and Aquaculture: Opportunities and Challenges. Food and Agriculture Organization, Rome, Italy, pp: 223.

Hussain T; Verma A K; Tiwari V K; Prakash C; Rathore G; Shete A P; Nuwansi K K T. 2014. Optimizing Koi Carp, Cyprinuscarpio var. Koi (Linnaeus, 1758), Stocking density and nutrient recycling with spinach in an aquaponic system. J. World Aquacult. Soc., 45(6), 652-661.

Hussain T; Verma A K; Tiwari V K; Prakash C; Rathore G; Shete A P; Saharan N. 2015. Effect of water flow rates on growth of Cyprinus carpio var. koi (Cyprinus carpio L., 1758) and spinach plant in aquaponic system. Aquacult. Int., 23, 369-384.

Ismail F; Gryzagoridis J. 2016. Sustainable development using renewable energy to boost aquaponics food production in needy communities. In: International Conference on the Industrial and Commercial Use of Energy (ICUE), 185-190.

Joyce A; Goddek S; Kotzen B; Wuertz S. 2019. Aquaponics: Closing the Cycle on Limited Water, Land and Nutrient Resources. In: Aquaponics Food Production Systems, Springer, Cham, 19-34.

Khater E S G; Bahnasawy A H; Shams A E H S; Hassaan M S; Hassan Y A. 2015. Utilization of effluent fish farms in tomato cultivation. Ecol. Eng., 83, 199-207.

Makhdom S; Shekarabi S P H; Mehrgan M S. 2017. Biological nutrient recovery from culturing of pearl gourami (Trichogaster leerii) by cherry tomato (Solanum lycopersicum) in aquaponic system. Environ. Sci. Pollut. Res., 24 (25), 20634- 20640.

Maucieri C; Nicoletto C; Junge R; Schmautz Z; Sambo P; Borin M. 2018. Hydroponic systems and water management in aquaponics: A review. Ital. J. Agron., 13, 1-11.

Nuwansi K K T; Verma A K; Prakash C; Tiwari V K; Chandrakant M H; Shete A P; Prabhath G P W A. 2015. Effect of water flow rate on polyculture of koi carp (Cyprinus carpio var. koi) and goldfish (Carassius auratus) with water spinach (Ipomoea aquatica) in recirculating aquaponic system. Aquacult. Int., 24(1), 385-393.

Nuwansi K K; Verma A K; Prakash C; Tiwari V K; Chandrakant M H; Shete A P; Prabhath G P. 2016. Effect of water flow rate on polyculture of koi carp (Cyprinus carpio var. koi) and goldfish (Carassius auratus) with water spinach (Ipomoea aquatica) in recirculating aquaponic system. Aquacult. Int., 24(1), 385-393.

Nuwansi K K T; Verma A K; Tiwari V K; Prakash C; Chandrakant M H. 2017. Standardization of thestocking density ratios of Koi carp (Cyprinuscarpio var. koi): Goldfish (Carassiusauratus) in polyculture aquaponic recirculating system. Turk. J. Fish. Aquat. Sci., 17(6), 1271-1278.

Nuwansi K K T; Verma A K; Rathore G; Prakash C; Chandrakant M H; Prabhath G P W A. 2019. Utilization of phytoremediated aquaculture wastewater for production of koi carp (Cyprinus carpio var. koi) and gotukola (Centella asiatica) in an aquaponics. Aquacult., 507, 361-369.

Padmakumar K G; Bindu L; Manu P S. 2012. Etroplus suratensis (Bloch), the state fish of Kerala. J. Biosci., 37(1), 925-931.

Peter R M; Verma A K; Saharan N; Tiwari V K; Thomas R M. 2019. Optimizing pearlspot, etroplus suratensis (Bloch, 1790) stocking density with tomato (solanum lycopersicum) in recirculating aquaponic system. J. Exp. Zool., 22(2), 1109-1113.

Shah S H; Ali S; Jan S A; Ali G M. 2015. Piercing and incubation method of in planta transformation producing stable transgenic plants by overexpressing DREB1A gene in tomato (Solanum lycopersicum Mill.). Plant Cell Tiss. Organ Cult., 120(3), 1139-1157.

Sharma K K; Mohapatra B C; Das P C; Sarkar B; Chand S. 2013. Water budgets for freshwater aquaculture ponds with reference to effluent volume. Agric. Sci., 4, 353−359.

Shete A P; Verma A K; Kohli M P S; Dash A; Tandel R. 2013a. Optimum stocking density for growth of goldfish, Carassius auratus (Linnaeus, 1758), in an aquaponic system. Isr. J. Aquacult.-Bamid., 65, 1-6.

Shete A P; Verma A K; Tandel R S; Prakash C; Tiwari V K; Hussain T. 2013b. Optimization of water circulation period for the culture of goldfish with spinach in aquaponic system. J. Agric. Sci., 5 (4), 26-30.

Shete A P; Verma A K; Chadha N K; Prakash C; Peter R M; Ahmad I; Nuwansi K K T. 2016. Optimization of hydraulic loading rate in aquaponic system with common carp (Cyprinus carpio) and mint (Mentha arvensis). Aquacult. Eng., 72, 53-57.

Shete A P; Verma A K; Chadha N K; Prakash C; Nuwansi K K T. 2017. Evaluation of hydroponic subsystem for the culture of common carp, Cyprinus carpio and mint, Mentha arvensis in an aquaponic system. Aquacult. Int., 25(3), 1291-1301.

Thomas R M; Verma A K; Prakash C; Krishna H; Prakash S; Kumar A. 2019. Utilization of Inland saline underground water for bio-integration of Nile tilapia (Oreochromis niloticus) and spinach (Spinacia oleracea). Agric. Water Manage., 222, 154-160.

Published

2023-07-10

Issue

Section

Regular Issue

How to Cite

R. M. Peter, A. K. Verma, Neelam Saharan, V. K. Tiwari, M. H. Chandrakant, & R. M. Thomas. (2023). Effect of Hydraulic Loading Rate on Production of Tomato (Solanum Lycopersicum) with Pearlspot (Etroplus Suratensis) in Recirculating Aquaponic System. Journal of Agricultural Engineering (India), 58(3), 300-308. https://doi.org/10.52151/jae2021581.1753