Potential of Mikania micrantha for biogas production

Authors

  • Debendra Baruah Tezpur University Author

DOI:

https://doi.org/10.52151/jae2024611.1836

Keywords:

Invasive weed, Mikania micrantha, biogas, methane

Abstract

Invasive weeds are one of the major ecosystem-degrading elements and also a threat to crop production. The conventional approaches of weed control appear ineffective for Mikania micrantha which is one of the notorious invasive weeds having vigorous propagation characteristics. The manual method of control is otherwise effective provided the manpower cost involved in the collection is recovered. This study attempts an innovative approach to energy recovery from Mikania micrantha biomass. The suitability of Mikania biomass as a source of biogas production is investigated using a commercially available biogas reactor. The study primarily aims to understand the techno-economic feasibility of achieving the benefits of weed control and the generation of clean cooking fuel taking into consideration of collection, and handling of Mikania biomass and its subsequent conversion into biogas for a typical rural situation. In general biogas production potential of hydrolyzed Mikania is comparable with several weed biomasses and even more than cow dung. The time spent to remove Mikania micrantha to protect crops and the ecosystem is justified by its fuel value as biogas. Outcomes of the current study concerning the benign control of invasive weed, will be useful to materialize the multifaceted benefits of biogas technology such as clean fuel (an alternative renewable source of energy) and nutrient recycling from the large-scale conversion of Mikania biomass into biogas and organic fertilizer. 

References

Abdallah M; Shanableh A; Adghim M; Ghenai C; Saad S. 2018. Biogas production from different types of cow manure, Advances in Science and Engineering Technology International Conferences (ASET), 2018, pp. 1-4, https://doi.org/10.1109/ICASET.2018.8376791

Adem Y; Sinan Ü; Abdülkadir K; Bünyamin A. 2018. Factors affecting the production of biogas. International Journal of Scientific & Engineering Research, 9(5), 59-62.

Alvarez R; Villca S; Liden G. 2006. Biogas production from llama and cow manure at high altitude. Biomass and Bioenergy, 30(1), 66-75. https://doi.org/10.1016/j.biombioe.2005.10.001 .

Archana K; Sylwia F; Malgorzata S; Hubert B; Wojciech A; Anna R; Aneta L. 2021. Biomass in biogas production: Pretreatment and codigestion, Renewable and Sustainable Energy Reviews, 150, https://doi.org/10.1016/j.rser.2021.111509 .

Banerjee A; Dewanji A. 2012. Mikania micrantha H.B.K.–a potential and economical threat to global biodiversity with special emphasis on Indian context. Proceedings of the 18th Australasian Weeds Conference Frankston, Melbourne, Victoria, Australia, 8-11 October 2012, 17-20, Available at http://www.caws.org.au/awc/2012/awc201210171.pdf. https://doi.org/10.13140/2.1.4486.9763

Bielczynski L W; Łącki M K; Hoefnagels I; Gambi, A; Croce R. 2017. Leaf and plant age affects photosynthetic performance and photoprotective capacity. Plant Physiol. 175, 1634-1648. https://doi.org/10.1104/pp.17.00904

Chang V S; Kaar W E; Burr B; Holtzapple M T. 2001. Simultaneous saccharification and fermentation of lime-treated biomass. Biotechnology Letters, 23(16), 1327-1333. https://doi.org/10.1023/A:1010594027988

Chen B M; Peng S L; Ni G Y. 2009. Effects of the invasive plant Mikania micrantha H.B.K. on soil nitrogen availability through allelopathy in South China. Biol Invasions 11, 1291–1299. https://doi.org/10.1007/s10530-008-9336-9

Choi Y; Ryu J; Lee S R. 2020. Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion. J Anim Sci Technol., 62(1), 74-83. https://doi.org/10.5187/jast.2020.62.1.74.

El-Shinnawi M M; El-Din M; El-Shimi S; Badawi M. 1989. Biogas production from crop residues and aquatic weeds. Resources, Conservation and Recycling 3(1), 33-45. https://doi.org/10.1016/0921-3449(89)90012-8

FDACS. n.d. Report on Mikania micrantha, https://www.fdacs.gov/Agriculture-Industry/Pests-and-Diseases/Plant-Pests-and-Diseases/Noxious-Weeds/Mikania-micrantha (accessed on: 13 May 2022).

Gaby J C; Zamanzadeh M; Horn S J. 2017. The effect of temperature and retention time on methane production and microbial community composition in staged anaerobic digesters fed with food waste. Biotechnol Biofuels 10, 302. https://doi.org/10.1186/s13068-017-0989-4

Garapaty, R. n.d. Need for integrated weed management approaches to control weeds, https://blog.sathguru.com/agri-stimulus/need-for-integrated-weed-management-approaches-to-control-weeds/ (accessed on: 21 June 2022).

Guerra J G; Cabello F; Fernández-Quintanilla C; Peña J M; Dorado J. 2022. How weed management influence plant community composition, taxonomic diversity and crop yield: A long-term study in a Mediterranean vineyard. Agric. Ecosyst. Environ. 326, 107816. https://doi.org/10.1016/j.agee.2021.107816

Hossain M K; Anwar S; Nandi R. 2016. Allelopathic effects of Mikania cordata on forest and agricultural crops in Bangladesh. J. For. Res. 27, 155–159. https://doi.org/10.1007/s11676-015-0161-6

Hudakorn T; Sritrakul N. 2020. Biogas and biomass pellet production from water hyacinth. Energy Rep,. 6(2), 532-538. https://doi.org/10.1016/j.egyr.2019.11.115

Hurley T; Paul M; George F. 2009. Weed management costs, weed best management practices, and the roundup ready® weed management program. AgBioForum., 12(3&4): 281-290.

Induchoodan T G; Izharul H; Ajay S K. 2020. Factors affecting anaerobic digestion for biogas production: a review, Editor(s): Chaudhery Hussain, Subrata Hait, Advanced Organic Waste Management, Elsevier, 223-233, https://doi.org/10.1016/B978-0-323-85792-5.00020-4.

IRENA. 2016. Measuring small-scale biogas capacity and production, International Renewable Energy Agency (IRENA), Abu Dhabi. Available at: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2016/IRENA_Statistics_Measuring_small-scale_biogas_2016.pdf (accessed on 18 March 2024)

Jankowskia K J; Dubisa B; Sokólskia M M; Załuskib D; Bórawskia P; Szemplińskia W. 2020. Productivity and energy balance of maize and sorghum grown for biogas in a large-area farm in Poland: An 11-year field experiment. Ind. Crops. Prod. 148, 112326. https://doi.org/10.1016/j.indcrop.2020.112326

Kaar W E and Holtzapple M T. 2000. Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass and Bioenergy, 18(3), 189-199. https://doi.org/10.1016/S0961-9534(99)00091-4 .

Kashyap D R; Dadhich K S; Sharma S K. 2003. Biomethanation under psychrophilic conditions: a review. Bioresource technology, 87(2), 147-153. https://doi.org/10.1016/S0960-8524(02)00205-5 .

Kaur R; Malhotra S; Inderjit. 2012. Effects of invasion of Mikania micrantha on germination of rice seedlings, plant richness, chemical properties and respiration of soil. Biol. Fertil. Soils. 48, 481-488. https://doi.org/10.1007/s00374-011-0645-2

Koppelmäki K; Parviainen T; Virkkunen E; Winquist E; Schulte R; Helenius J. 2019. Ecological intensification by integrating biogas production into nutrient cycling: Modeling the case of Agroecological Symbiosis. Agric. Sys. 170, 39-48. https://doi.org/10.1016/j.agsy.2018.12.007

Kulmi G S; Tiwari P N. 2005. Integrated Weed Management in Asgandh (Withania somnifera Dunal). Ind.J. Weed sci. 37(1&2), 77-80.

Kumar S; Mukherjee S; Devotta S. 2010. Performance study for anaerobic digestion of municipal solid waste in a single phase reactor. International Journal of Environment and Pollution, 43(1-3), 16-31. https://doi.org/10.1504/IJEP.2010.035910

Kumar S; Pranav P K. 2018. Gasification Prospective of Compressed Industrial Tea (Camellia sinensis) Waste using Fixed Bed Downdraft Gasifier, J. Agric. Eng., 55(1), 25-35. https://doi.org/10.52151/jae2018551.1643

Liu J; Tang Z; Wang C; Wu K; Song Y; Wang X; Zhang Z; Zhao X; Yang B; Piao P; Yin F; Wudi Zhang W. 2021. Novel technique for sustainable utilisation of water hyacinth using EGSB and MCSTR: Control overgrowth, energy recovery, and microbial metabolic mechanism. Renew. Energy. 163, 1701-1710. https://doi:10.1016/j.renene.2020.10.093

Lohan S K; Brar N S; Singh A; Dogra R; Dixit A K; Phutela U G; Biwalkar N and Javed M. 2023. Energy Input-Output Analyses of Major Field Vegetable Crops Production in Punjab. J. Agric. Eng., 60(2), 109-125. https://doi.org/10.52151/jae2023602.1801

Maucieri C; Camarotto C; Florio G; Albergo R; Ambrico A; Trupo M; Borin M. 2019. Bioethanol and biomethane potential production of thirteen pluri-annual herbaceous species. Ind. Crops Prod. 129, 694-701. https://doi.org/10.1016/j.indcrop.2018.12.007.

Ohlsson L; Karlsson S; Rupar-Gadd K; Albers E; Welander U. 2020. Evaluation of Laminariadigitata and Phragmitesaustralis for biogas production and nutrient recycling. Biomass Bioenerg. 140, 105670. https://doi.org/10.1016/j.biombioe.2020.105670

Olatunji KO; Ahmed NA; Ogunkunle O. 2021. Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: a review. Biotechnol Biofuels 14, 159. https://doi.org/10.1186/s13068-021-02012-x

Patowary D; Baruah D C. 2018. Effect of combined chemical and thermal pretreatments on biogas production from lignocellulosic biomasses. Ind. Crops Prod. 124, 735-746. https://doi.org/10.1016/j.indcrop.2018.08.055

Paudel R. 2011. Insight into invasive species (Mikania micrantha), its control measures and programmes in Nepal. The Initiation, 4, 115-119.

Poudel M; Prabin A; Kanti T. 2019. Biology and Control Methods of the Alien Invasive Weed Mikania Micrantha: A Review. Environ. Contamin. Rev. 2, 6-12. https://doi.org/10.26480/ecr.01.2019.06.12

Rabemanolontsoa H and Saka S. 2016. Various pretreatments of lignocellulosic. Bioresource Technology, 199, 83-91. https://doi.org/10.1016/j.biortech.2015.08.029

Romano R T and Zhang R. 2011. Anaerobic digestion of onion residuals using a mesophilic anaerobic phased solids digester. Biomass and Bioenergy, 35(10), 4174-4179. http://dx.doi.org/10.1016/j.biombioe.2011.06.036 .

Saha B; Devi C; Khwairakpam M; Kalamdha A S. 2018. Vermicomposting and anaerobic digestion – viable alternative options for terrestrial weed management – A review. Biotechnol. Rep. 17, 70-76. https://doi.org/10.1016/j.btre.2017.11.005

Sandilyan S. 2019. Strategy on Control and Management of the Worst Invasive Alien Plant Species Reported in India. National Biodiversity Authority, Chennai. 60 p. Available at: http://nbaindia.org/cebpol/pub/strategy.pdf (accessed 8 July 2022).

Singh R; Poudel M. 2013. Briquette Fuel - An Option for Management of Mikania micrantha. Nepal J. Sci. Technol. 14, 109-114. https://doi.org/10.3126/njst.v14i1.8930 .

Speda J; Johansson M A; Odnell A; Karlsson M. 2017. Enhanced biomethane production rate and yield from lignocellulosic ensiled forage ley by in situ anaerobic digestion treatment with endogenous cellulolytic enzymes. Biotechnol. Biofuels. 10, 129. https://doi.org/10.1186/s13068-017-0814-0 .

USDA. n.d, Biological Control of Mile-A-Minute Weed, Mikania Micrantha Kunth, in the Republic of Palau, 2008, https://portal.nifa.usda.gov/web/crisprojectpages/0200526-biological-control-of-mile-a-minute-weed-mikania-micrantha-kunth-in-the-republic-of-palau.html (accessed 29 June 2022).

Vialet-Chabrand S; Matthews J S; Simkin A J; Raines C A; Lawson T. 2017. Importance of Fluctuations in Light on Plant Photosynthetic Acclimation. Plant Physiol. 173, 2163-2179. https://doi.org/10.1104/pp.16.01767 .

Wen D. 2000. Comparison of basic photosynthetic characteristics between exotic invader weed Mikania Micrantha and its companion species. Trop. Subtrop. Bot. 8, 139-146. https://doi.org/10.1016/j.jprot.2021.104126.

Wu L; Hao Y; Sun C; Liu R. 2009. Effect of different solid concentration on biogas yield and composition during anaerobic fermentation process. International Journal of Global Energy Issues, 31(3-4), 240-250. https://doi.org/10.1504/IJGENVI.2009.027639

Published

2024-04-01

Issue

Section

Regular Issue

How to Cite

Baruah, D. (2024). Potential of Mikania micrantha for biogas production. Journal of Agricultural Engineering (India), 61(1), 123-132. https://doi.org/10.52151/jae2024611.1836