Anaerobic Digestion of Pre-treated Maize Cob for Enhanced Biogas Production

Authors

  • Mythili Rangasamy Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India Author
  • Anita Nagarajan Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India. Author
  • Umamaheshwari Tirumalai Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India. Author
  • Pavithra Rajendran Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India. Author
  • Abishek Ramamoorthi Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India. Author
  • Subburamu Karthikeyan Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India. Author

DOI:

https://doi.org/10.52151/jae2021581.1760

Keywords:

Maize cob, pre-treatment, potassium hydroxide, anaerobic digestion, bio-digested slurry

Abstract

Maize cob is a ligno-cellulosic wastes available in India. In the present study, properties of maize cob were determined as per standard test methods. Based on the values, maize cob was pre-treated with potassium hydroxide, hydrogen peroxide, and phosphoric acid in 1, 2, 3%v/v concentrations for 24 h. Pre-treatment with 3%v/v potassium hydroxide was effective in enhancing the availability of cellulose (57%). Anaerobic digestion of the alkali pre-treated maize cob showed potential of enhanced methane generation (0.0202 m3.kg-1 of TS) by three times using the conventional cow dung slurry as inoculum source. The bio-digested slurry contained (nitrogen (0.04 – 0.07%), and phosphorus (0.012 – 0.02%) and , potassium (0.01 – 0.03%)) macro-nutrients, and proved to have potential of use as organic manure.

Author Biographies

  • Mythili Rangasamy, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

    Assistant Professor

  • Anita Nagarajan, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.

    UG Student

  • Umamaheshwari Tirumalai, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.

    UG Student

  • Pavithra Rajendran, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.

    UG Student

  • Abishek Ramamoorthi, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.

    UG Student

  • Subburamu Karthikeyan, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.

    Professor

References

Anon. 2020. Global Carbon Budget 2020. Global Carbon Project: Supplemental data of Global Carbon Budget 2020 (Version 1.0), Earth Syst. Sci. Data, 12, 3269-3340. https://doi.org/10.18160/gcp-2020.

Anon. 2021a. All India Installed Power Capacity. Installed Capacity report, Central Electricity Authority, New Delhi, https://cea.nic.in/installed-capacity-report/?lang=en. Retrieved on 05.07.2021.

Anon. 2021b. Product Profile: Indian Production of Maize. APEDA Agri Exchange, Ministry of Commerce and Industry, Government of India, New Delhi.

https://agriexchange.apeda.gov.in/India%20Production/AgriIndia_Productions.aspx?productcode=1009 Data retrieved on 12.02.2021.

Anukam A I; Goso B P; Okoh O O; Mamphweli S N. 2017. Studies on characterization of maize cob for application in a gasification process for energy production. J. Chem., 8, 1-9. https://doi.org/10.1155/2017/6478389.

AOAC. 1990. AOAC Method 973.18 - Fiber (Acid Detergent) and Lignin in Animal Feeds. In: Helrick K (Ed.), Official Method of Analysis of the Association of Official Analytical Chemists, Arlington, VA: Association of Official Analytical Chemists. 15th ed., 82, 4.6.03, pp: 2.

ASTM. 1987. D 3173-87- Standards Test Method for Moisture in the Analysis Sample of Coal and Coke, in Gaseous Fuels. Coal and Coke, Section 5, Vol. 05-0, pp: 300.

ASTM. 1989. D 3174-89 - Standards Test Method for Ash in the Analysis Sample of Coal and Coke, in Gaseous Fuels. Coal and Coke, Section 5, Vol. 05-05, pp: 302.

ASTM. 1989. D 3175-89 - Standards Test Method for Volatile Matter in the Analysis Sample of Coal and Coke, in Gaseous Fuels. Coal and Coke, Section 5, Vol. 05-05, pp: 305

Belkis S R; Jaime S A A; Luz B D; Jorge del Real O; Kelly J G T. 2020. Improvement of anaerobic digestion of hydrolysed maize cob waste by organosolv pretreatment for biogas production. Appl. Sci., 10, 2785-2795.

Blandino M; Fabbri C; Soldano M; Ferrero C; Reyneri A. 2016. The use of cobs, a maize grain by- product, for energy production in anaerobic digestion. Ital. J. Agron., 11, 195-198.

Brodeur G; Yau E; Badal K; Collier J; Ramachandran K B; Ramakrishnan S. 2011. Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Biofuel Prod., 2011, 1-17. https://doi.org/10.4061/2011/787532.

Chi X; Liu C; Yan-Hong B; Yu G; Zhang Y; Wang Z; Li B; Cui Q. 2019. A clean and effective potassium hydroxide pretreatment of maize cob residue for the enhancement of enzymatic hydrolysis at high solids loading. RSC Adv., 9, 11558-11566.

Cudjoe E B; Mensah M. 2013. Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. Int. J. Chem. Eng., 2013, 1-21. http://dx.doi.org/10.1155/2013/719607.

Cuetos M J; Gomez X; Otero M; Moran A. 2009. Anaerobic digestion of solid slaughterhouse waste: Study of biological stabilization by Fourier Transform infrared spectroscopy and thermogravimetry combined with mass spectrometry. Biodegrad., 21(4), 543-556. DOI:10.1007/s10532-009-9322-7.

Damilano E D; Almeida F S; Ribeiro B A; Libanio A S; Fatima R R S; Aparecida K S A; Antônio M; Simões R C M. 2017. Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives. Biomass Conv. Bioref., 8(1), 225-234. Doi:10.1007/s13399-017-0277-3.

Danish M; Naqvi M; Farooq U; Naqvi S. 2015. Characterization of South Asian agricultural residues for potential utilisation in future energy mix. Energy Procedia, 75, 2974-2980.

Datta A; Emmanuel M A; Ram N K; Dhingra S. 2020. Crop Residue Management: Solution to Achieve Better Air Quality. The Energy and Resources Institute, New Delhi. https://www.teriin.org/policy-brief/crop-residue-management-solution-achieve-better-air-quality.

Demiral I; Eryazıcı A; Şensöz S. 2012. Bio-oil production from pyrolysis of maize cob (Zea mays L.). Biomass Bioenergy, 36, 43-49.

Demirbas A. 2008. Products from lignocellulosic materials via degradation processes. Energy Sour. Part A, 30(1), 27- 37.

Dutra E D; Santos F A; Alencar B R A; Reis A L S; Fatima R R S; Aparecida K S A; Morais M A; Menezes R S C. 2018. Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: Status and perspectives. Biomass Convers. Biorefin., 8, 225-234.

El-Hadj T B; Astals S; Gali A; Mace S; Joan M A. 2009. Ammonia influence in anaerobic digestion of OFMSW. Water Sci. Technol., 59(6),1153-1158.

Gurung B. 1998. Training Programme on Proper Use of Slurry for the Technical Staff of SNV/BSP. A Training Manual, Biogas Support Programme, Kathmandu, Nepal, pp: 52.

Harmsen P; Huijgen W; Bermudez L; Bakker R. 2010. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Biosynergy, Wageningen UR Food and Biobased Research, FBR BP Biorefinery and Natural Fibre Technology, Wageningen UR Food & Biobased Research, Tech. Rep. 1184, pp: 54.

Haykiri-Acma H; Yaman S. 2019. Effects of dilute phosphoric acid treatment on structure and burning characteristics of lignocellulosic biomass. J. Energy Res. Technol., 141, 082203-1 – 082203-8.

Heo H S; Park H J; Yim J H; Sohn J M; Park J; Kim S S; Ryu C; Jeon J K; Park Y K. 2010. Influence of operation variables on fast pyrolysis of Miscanthus sinensis var. purpurascens. Bioresour. Technol., 101, 3672-3677.

Hosgun E F; Berikten D; Kivanc M; Bozan B. 2017. Ethanol production from hazelnut shells through enzymatic saccharification and fermentation by low-temperature alkali pretreatment. Fuel, 196, 280-287.

Huang C; Wu X; Huang Y; Lai C; Li X; Yong Q. 2016. Prewashing enhances the liquid hot water pretreatment efficiency of waste wheat straw with high free ash content. Bioresour. Technol., 219, 583-588. doi: http://dx.doi.org/10.1016/j.biortech.2016.08.018

Imman S; Laosiripojana N; Champreda V. 2018. Effects of liquid hot water pretreatment on enzymatic hydrolysis and physicochemical changes of maize cobs. Appl. Biochem. Biotechnol., 184, 432–443.

Ioannidou O; Zabaniotou A; Antonakou E V; Papazisi K M; Lappas A A; Athanassiou C. 2009. Investigating the potential for energy, fuel, materials and chemicals production from maize residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renewable Sustainable Energy Rev., 13(4), 750-762.

Jenkins B M; Baxter L L; Miles T R; Miles T R. 1998. Combustion properties of biomass. Fuel Process. Technol., 54, 17-46.

Kamau J; Ahmed A. 2016. A review of the use of maize cob ash as a supplementary cementitious material. Eur. J. Eng. Res. Sci., 2(8), 415-42. DOI:10.24018/ejers.2017.2.8.415

Karimi K; Taherzadeh M J. 2016. A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity, Bioresour. Technol., 200, 1008-1018. https://doi.org/10.1016/j.biortech.2015.11.022

Kumar P; Barrett D M; Delwiche M J; Stroeve P. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Indus. Eng. Chem. Res., 48(8), 3713–3729.

Li L; Yang X; Li X; Zheng M; Chen J; Zhang Z. 2010. The influence of inoculum sources on anaerobic biogasification of NaOH-treated maize stover. Energy Source Part A, 33(2), 138-144.

Li Q; Ji G S; Tang Y B; Gu X D; Fei J J; Jiang H Q. 2012. Ultrasound-assisted compatible in situ hydrolysis of sugarcane bagasse in cellulase-aqueous- N-methylmorpholine N-oxide system for improved saccharification. Bioresour. Technol., 107, 251-257.

Liu X; Zhang Y; Li Z; Feng R; Zhang Y. 2014. Characterization of maize cob-derived biochar and pyrolysis kinetics in comparison with maize stalk and sawdust. Biores. Technol., 170, 76-82.

Luo W; Wang J; Liu X; Li H; Pan H; Gu Q; Yu X. 2016. A facile and efficient pretreatment of maize cob for bioproduction of butanol. Bioresour. Technol., 140, 86-89.

Maurya D P; Negi S. 2015. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. Biotech., 5(5), 597-609. doi:10.1007/s13205-015-0279-4.

Mittal K M. 1996. Biogas Systems: Principles and Application. New Age International Limited Publishers, India, pp: 412. ISBN-13: 978-8122409475

Mpho S M; Malgas S; Abhishek B; Rashamuse K; Pletschke B Y. 2020. The effects of alkaline pretreatment on agricultural biomasses (maize cob and sweet sorghum bagasse) and their hydrolysis by a termite-derived enzyme cocktail. Agron., 10, 1211- 1224.

Noelia P R; Diana G B; Manuel J D. 2017. Extrusion and enzymatic hydrolysis as pretreatments on maize cob for biogas production. Renewable Energy, 107, 597-603.

Peng Z; Huang W; Ji Z; Zhou C; Yuan S. 2018. Mechanisms of hydroxyl radicals production from pyrite oxidation by hydrogen peroxide: Surface versus aqueous reactions. Geochim Cosmochim Acta., 238, 394-410. doi:10.1016/j.gca.2018.07.018.

Ratanakandilok S; Ngamprasertsith S; Prasassarakich P. 2001. Coal desulfurization with methanol/water and methanol/KOH. Fuel, 80(13), 1937- 1942. doi:10.1016/S0016-2361(01)00047-3.

Shah T A; Tabassum R. 2018. Enhancing biogas production from lime soaked maize cob residue. Int. J. Renewable Energy Res., 8, 761-766.

Shariff A; Aziz N S M; Ismail N I; Abdullah N. 2016. Maize cob as a potential feedstock for slow pyrolysis of biomass. J. Phys. Sci., 27(2), 123-137.

Shitophyta L M; Maryudi M. 2018. Comparison of kinetic model for biogas production from maize cob. IOP Conf. Series: Materials Science and Engineering, 345, 012004. doi:10.1088/1757-899X/345/1/012004.

Sopee Pan-in; Natthanicha S. 2017. Methane production potential from anaerobic co-digestions of different animal dungs and sweet maize residuals. Energy Procedia., 138, 943–948.

Tan H; Yang R; Sun W; Wang S. 2010. Peroxide-aetic acid pretreatment to remove bagasse lignin prior to enzymatic hydrolysis. Ind. Eng. Chem. Res.. 49, 1473–1479.

Vuthaluru H B; Kotadiya N; Vuthaluru R; David F. 2011. CFD based identification of clinker formation regions in large scale utility boiler. Appl. Therm. Eng., 31, 1368 – 1380.

Wang B; Wang X; Feng H. 2010. Deconstructing recalcitrant miscanthus with alkaline peroxide and electrolyzed water. Bioresour. Technol., 101, 752–760.

Werner K; Pommer L; Brostrom M. 2014. Thermal decomposition of hemicelluloses. J. Anal. Appl. Pyrolysis. Doi: 10.1016/j.jaap.2014.08.013.

Yan L; Pu Y; Bowden M; Ragauskaa A J; Yang B. 2016. Physiochemical characterization of lignocellulosic biomass dissolution by flow through pretreatment. ACS Sustainable Chem. Eng., 4(1), 219-227.

Yin J; Hao L; Yu W; Wang E; Zhao M; Xu Q; Liu Y. 2014. Enzymatic hydrolysis enhancement of maize lignocellulose by supercritical CO2 combined with ultrasound pretreatment. Chin. J. Catal., 35(5), 763-769.

Zhang C; Shu-Qian X; Pei-Sheng M. 2016. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour. Technol., 219, 1-5.

Zhang L; Yan L; Wang Z; Laskar D D; Swita M S; Cort J R; Yang B. 2015. Characterization of lignin derived from water-only and dilute acid flow through pretreatment of poplar wood at elevated temperatures. Biotechnol. Biofuel, 8(1), 203-217. doi:10.1186/s13068-015-0377-x.

Zhao C; Shao Q; Cao Y; Ding W; Peng H. 2015. Effects of combined hydrogen peroxide and liquid ammonia treatment on enzymatic hydrolysis of maize cob. Trans. Chin. Soc. Agrlc. Mach., 46(6),193-200.

Zohhlami A; Paes G. 2019. Lignocellulosic biomass: Understanding recalcitrance and predicting hydrolysis. Front. Chem., 7, 874-884. doi:10.3389/fchem.2019.00874.

Published

2023-05-02

Issue

Section

Regular Issue

How to Cite

Mythili Rangasamy, Anita Nagarajan, Umamaheshwari Tirumalai, Pavithra Rajendran, Abishek Ramamoorthi, & Subburamu Karthikeyan. (2023). Anaerobic Digestion of Pre-treated Maize Cob for Enhanced Biogas Production. Journal of Agricultural Engineering (India), 58(4), 397-409. https://doi.org/10.52151/jae2021581.1760